Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36745–36758 | Cite as

Multibiomarker biomonitoring approach using three bivalve species in the Ebro Delta (Catalonia, Spain)

  • Sara Dallarés
  • Noelia Carrasco
  • Diana Álvarez-Muñoz
  • Maria Rambla-Alegre
  • Montserrat Solé
Research Article
  • 83 Downloads

Abstract

Bivalves have proved to be useful bioindicators for environmental pollution. In the present study, mussels (Mytilus galloprovincialis), cockles (Cerastoderma edule), and razor shells (Solen marginatus) were collected in the Ebro Delta, an extensive area devoted to rice farming and affected by pesticide pollution, from April to July, the heaviest rice field treatment period. Possible effects of pollution were assessed through biochemical markers (carboxylesterase (CE), antioxidant and neurotoxicity-related enzymes, and lipid peroxidation levels). Data on environmental variables, bivalve reproductive condition, and presence of organic pollutants, marine phycotoxins, pathogens, or histopathological conditions in bivalve’s tissues were also evaluated. Although the bioaccumulated pesticides did not explain the patterns observed for biochemical responses, the obtained results point to an effect of environmental pesticide pollution on enzymatic markers, with a prominent contribution of CE to such changes. Mussels and razor shells provided a more sensitive biochemical response to pollution than cockles. Environmental variables, bivalve reproductive condition, and marine phycotoxins did not seem to have a relevant effect on the biomarkers assessed.

Keywords

Mussel Cockle Razor shell Biomarkers Contaminants Pesticides Histology Phycotoxins 

Notes

Funding information

This work was financed by the Spanish Ministry of Economy, Industry and Competitiveness project AIMCOST (ref CGL2016-76332-R MINECO/FEDER/UE). It was also partially supported by the projects XENOMETABOLOMIC (ref CTM2015-73179-JIN AEI/FEDER/UE) and EMERGER (ref E-RTA2015-00004-00-00 INIA). The authors acknowledge the Departament d’Agricultura, Ramaderia, Pesca i Alimentació (DARP) through the Monitoring Unit Program. We also appreciate the support of the CERCA program of the Generalitat de Catalunya.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_3614_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)
11356_2018_3614_MOESM2_ESM.docx (22 kb)
ESM 2 (DOCX 21 kb)

References

  1. Almeida EA, Mascio P (2011) Hypometabolism and antioxidative defense systems in marine invertebrates. Hypometab Strateg Surviv Vertebr Invertebr 661:39–55Google Scholar
  2. Álvarez-Muñoz D, Rodríguez-Mozaz S, Maulvault AL, Tediosi A, Fernández-Tejedor M, Van den Heuvel F, Kotterman M, Marques A, Barceló D (2015) Occurence of pharmaceuticals and endocrine disrupting compounds in microalgaes, bivalves, and fish from coastal areas in Europe. Environ Res 143:56–64CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Comp Biochem Physiol B: Biochem Mol Biol 125:359–369CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311CrossRefGoogle Scholar
  7. Capó X, Tejada S, Box A, Deudero S, Sureda A (2015) Oxidative status assessment of the endemic bivalve Pinna nobilis affected by the oil spill from the sinking of the Don Pedro. Mar Environ Res 110:19–24CrossRefGoogle Scholar
  8. Carrasco N, Arzul I, Berthe FCJ, Férnandez-Tejedor M, Durfort M, Furones MD (2008) Delta de l’Ebre is a natural bay model for Marteilia spp. (Paramyxean) dynamics and life-cycle studies. Dis Aquat Org 79:65–73CrossRefGoogle Scholar
  9. Cruz D, Almeida Â, Calisto V, Esteves VI, Schneider RJ, Wrona FJ, Soares AMVM, Figueira E, Freitas R (2016) Caffeine impacts in the clam Ruditapes philippinarum: alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere 160:95–103CrossRefGoogle Scholar
  10. Dallarés S, Moyà-Alcover CM, Padrós F, Cartes JE, Solé M, Castañeda C, Carrassón M (2016) The parasite community of Phycis blennoides (Brünnich, 1768) from the Balearic Sea in relation to diet, biochemical markers, histopathology and environmental variables. Deep-Sea Res I 118:84–100CrossRefGoogle Scholar
  11. Dodder NG, Maruya KA, Lee Ferguson P, Grace R, Klosterhaus S, La Guardia MJ, Lauenstein GG, Ramirez J (2014) Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated waste water effluent. Mar Pollut Bull 81(2):340–346CrossRefGoogle Scholar
  12. Escartín E, Porte C (1997) The use of cholinesterase and carboxylesterase activities from Mytilus galloprovincialis in pollution monitoring. Environ Toxicol Chem 16(10):2090–2095CrossRefGoogle Scholar
  13. Farcy E, Burgeot T, Haberkorn H, Auffret M, Lagadic L, Allenou J-P, Budzinski H, Mazzella N, Pete R, Heydorff M, Menard D, Mondeguer F, Caquet T (2013) An integrated environmental approach to investigate biomarker fluctuations in the blue mussel Mytilus edulis L. in the Vilaine estuary, France. Environ Sci Pollut Res 20:630–650CrossRefGoogle Scholar
  14. Ferrante MC, Clausi MT, Naccari C, Fusco G, Raso GM, Santoro A, Meli R (2014) Does the clam Ensis siliqua provide useful information about contamination by polychlorinated biphenyls and organichlorine pesticides beyond that of mussel Mytilus galloprovincialis? Bull Environ Contam Toxicol 92:636–641CrossRefGoogle Scholar
  15. Freitas JS, Felicio AA, Teresa FB, de Almeida EA (2017) Combined effects of temperature and clomazone (Gamit (R)) on oxidative stress responses and B-esterase activity of Physalaemus nattereri (Leiuperidae) and Rhinella schneideri (Bufonidae) tadpoles. Chemosphere 185:548–562CrossRefGoogle Scholar
  16. Galloway TS, Millward N, Browne MA, Depledge MH (2002) Rapid assessment of organophosphorous/carbamate exposure in the bivalve mollusc Mytilus edulis using combined esterase activities as biomarkers. Aquat Toxicol 61:169–180CrossRefGoogle Scholar
  17. García-Altares M, Diogène J, de la Iglesia P (2013) The implementation of liquid chromatography tandem mass spectrometry for the official control of lipophilic toxins in seafood: single-laboratory validation under four chromatographic conditions. J Chromatogr 1275:48–60CrossRefGoogle Scholar
  18. González-Fernández C, Albentosa M, Campillo JA, Viñas L, Fumega J, Franco A, Besada V, González-Quijano A, Bellas J (2015a) Influence of mussel biological variability on pollution biomarkers. Environ Res 137:14–31CrossRefGoogle Scholar
  19. González-Fernández C, Albentosa M, Campillo JA, Viñas L, Romero D, Franco A, Bellas J (2015b) Effect of nutritive status on Mytilus galloprovincialis pollution biomarkers: implications for large-scale monitoring programs. Aquat Toxicol 167:90–105CrossRefGoogle Scholar
  20. González-Fernández C, Albentosa M, Sokolova I (2017) Interactive effects of nutrition, reproductive state and pollution on molecular stress response of mussels, Mytilus galloprovincialis Lamarck, 1819. Mar Environ Res 131:103–115CrossRefGoogle Scholar
  21. Guallar C, Delgado M, Diogène J, Fernández-Tejedor M (2016) Artificial neural network approach to population dynamics of harmful algal blooms in Alfacs Bay (NW Mediterranean): case studies of Karlodinium and Pseudo-nitzschia. Ecol Model 338:37–50CrossRefGoogle Scholar
  22. Hu M, Li L, Sui Y, Li J, Wang Y, Lu W, Dupont S (2015) Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus. Fish Shellfish Immunol 46:573–583CrossRefGoogle Scholar
  23. Izagirre U, Garmendia L, Soto M, Etxebarria N, Marigómez I (2014) Health status assessment through an integrative biomarker approach in mussels of different ages with a different history of exposure to the Prestige oil spill. Sci Total Environ 493:65–78CrossRefGoogle Scholar
  24. Jebali J, Ben-Khedher S, Kamel N, Ghedira J, Bouraoui Z, Boussetta H (2011) Characterization and evaluation of cholinesterase activity in the cockle Cerastoderma glaucum. Aquat Biol 13:243–250CrossRefGoogle Scholar
  25. Kim Y, Powell EN, Wade TL, Presley BJ, Sericano J (1998) Parasites of sentinel bivalves in the NOAA status and trends program: distribution and relationship to contaminant body burden. Mar Pollut Bull 37(1–2):45–55CrossRefGoogle Scholar
  26. Köck M, Farré M, Martínez E, Gajda-Schrantz K, Ginebreda A, Navarro A, López de Alda M, Barceló D (2010) Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro River delta (Spain). J Hydrol 383:73–82CrossRefGoogle Scholar
  27. Koenig S, Solé M (2012) Natural variability of hepatic biomarkers in Mediterranean deep-sea organisms. Mar Environ Res 79:122–131CrossRefGoogle Scholar
  28. Kristoff G, Guerrero NRV, Cochon AC (2010) Inhibition of cholinesterases and carboxylesterases of two invertebrate species, Biomphalaria glabrata and Lumbriculus variegatus, by the carbamate pesticide carbaryl. Aquat Toxicol 96(2):115–123CrossRefGoogle Scholar
  29. Laetz CA, Baldwin DH, Hebert VR, Stark JD, Scholz NL (2014) Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon. Aquat Toxicol 146:38–44CrossRefGoogle Scholar
  30. Lehotay SJ, Harman-Fetcho JA, McConnell LL (1998) Agricultural pesticide residues in oysters and water from two Chesapeake Bay tributaries. Mar Pollut Bull 37:32–44CrossRefGoogle Scholar
  31. Mañosa S, Mateo R, Guitart R (2001) A review of the effects of agricultural and industrial contamination on the Ebro Delta biota and wildlife. Environ Monit Assess 71:187–205CrossRefGoogle Scholar
  32. Matozzo V, Febrello J, Masiero L, Ferraccioli F, Finos L, Pastore P, Di Gangi IM, Bogialli S (2018a) Ecotoxicological risk assessment for the herbicide glyphosate to non-target aquatic species: a case study with the mussel Mytilus galloprovincialis. Environ Pollut 233:623–632CrossRefGoogle Scholar
  33. Matozzo V, Ercolini C, Serracca L, Battistini R, Rossini I, Granato G, Quaglieri E, Perolo A, Finos L, Arcangeli G, Bertotto D, Radaelli G, Chollet B, Arzul I, Quaglio F (2018b) Assessing the health status of farmed mussels (Mytilus galloprovincialis) through histological, microbiological and biomarker analyses. J Invertebr Pathol 153:165–179CrossRefGoogle Scholar
  34. Mejdoub Z, Fahde A, Loutfi M, Kabine M (2017) Oxidative stress responses of the mussel Mytilus galloprovincialis exposed to emissary’s pollution in coastal areas of Casablanca. Ocean Coast Manag 136:95–103CrossRefGoogle Scholar
  35. Moore MN, Viarengo A, Donkin P, Hawkins AJ (2007) Autophagic and lysosomal reactions to stress in the hepatopancreas of blue mussels. Aquat Toxicol 84(1):80–91CrossRefGoogle Scholar
  36. Morley NJ (2010) Interactive effects of infectious diseases and pollution in aquatic molluscs. Toxicol 96:27–36Google Scholar
  37. Mundhe AY, Bhilwade H, Pandit SV (2016) Genotoxicity and oxidative stress as biomarkers in fresh water mussel, Lamellidens marginalis (Lam.) exposed to monocrotophos. Indian J Exp Biol 54:822–828Google Scholar
  38. Nilin J, Monteiro M, Domingues I, Loureiro S, Costa-Lotufo LV, Soares A (2012) Bivalve esterases as biomarker: identification and characterization in European cockles (Cerastoderma edule). Bull Environ Contam Toxicol 88:707–711CrossRefGoogle Scholar
  39. Nunes B, Resende ST (2017) Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants. Environ Sci Pollut Res 24:12155–12167CrossRefGoogle Scholar
  40. Ochoa V, Riva C, Faria M, Barata C (2013) Responses of B-esterase enzymes in oysters (Crassostrea gigas) transplanted to pesticide contaminated bays form the Ebro Delta (NE, Spain). Mar Pollut Bull 66:135–142CrossRefGoogle Scholar
  41. Off J Eur Union L 220 (2013) 14. (Regulation (EC) No 786/2013)Google Scholar
  42. Off J Eur Union L 226 (2004) 22. (Regulation (EC) No 853/2004)Google Scholar
  43. Otero S, Kristoff G (2016) In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity. Aquat Toxicol 180:186–195CrossRefGoogle Scholar
  44. Owusu EO, Komi K, Horiike M, Hirano C (1994) Some properties of carboxylesterase form Aphis gossypii Glover (Homoptera: Aphididae). Appl Entomol Zool 29(1):7–53CrossRefGoogle Scholar
  45. Palm HW, Dobberstein RC (1999) Occurrence of trichodinid ciliates (Peritrichida: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use of as a biological indicator. Parasitol Res 85:726–732CrossRefGoogle Scholar
  46. Pearce NJG, Mann VL (2006) Trace metal variations in the shells of Ensis siliqua record pollution and environmental conditions in the sea to the west of mainland Britain. Mar Pollut Bull 52:739–755CrossRefGoogle Scholar
  47. Pfeifer S, Schiedek D, Dippner JW (2005) Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea. J Exp Mar Bio Ecol 320:93–103CrossRefGoogle Scholar
  48. Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761CrossRefGoogle Scholar
  49. Powell EN, Barber RD, Kennicut MC II, Ford SE (1999) Influence of parasitism in controlling the health reproduction and PAH body burden of petroleum seep mussels. Deep-Sea Res Part I 46:2053–2078CrossRefGoogle Scholar
  50. Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117CrossRefGoogle Scholar
  51. Rodrigues ET, Alpendurada MF, Ramos F, Pardal MÂ (2018) Environmental and human health risk indicators for agricultural pesticides in estuaries. Ecotoxicol Environ Saf 150:224–231CrossRefGoogle Scholar
  52. Santos TCR, Rocha JC, Barcelo D (2000) Determination of rice herbicides, their transformation products and clofibric acid using on-line solid-phase extraction followed by liquid chromatography with diode array and atmospheric pressure chemical ionization mass spectrometric detection. J Chromatogr A 879(1):3–12CrossRefGoogle Scholar
  53. Solé M, Sanchez-Hernandez JC (2018) Elucidating the importance of mussel carboxylesterase activity as exposure biomarker of environmental contaminants of current concern: an in vitro study. Ecol Indic 85:432–439CrossRefGoogle Scholar
  54. Solé M, Rivera-Ingraham G, Freitas R (2018a) The use of carboxylesterases as biomarkers of pesticide exposure in bivalves: a methodological approach. Comp Biochem Physiol Part C: Toxicol Pharmacol 212:18–24Google Scholar
  55. Solé M, Bonsignore M, Rivera-Ingraham G, Freitas R (2018b) Exploring alternative biomarkers of pesticide pollution in clams. Mar Pollut Bull 136:61–67CrossRefGoogle Scholar
  56. Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68CrossRefGoogle Scholar
  57. StatSoft, Inc (2004) STATISTICA (data analysis software system), version 7 www.statsoft.com
  58. Suárez-Serrano A, Ibáñez C, Lacorte S, Barata C (2010) Ecotoxicological effects of rice field waters on selected planktonic species: comparison between conventional and organic farming. Ecotoxicol 19:1523–1535CrossRefGoogle Scholar
  59. Terrado M, Kuster M, Raldúa D, Lopez de Alda M, Barceló D, Tauler R (2007) Use of chemometric and geostatistical methods to evaluate pesticide pollution in the irrigation and drainage channels of the Ebro river delta during the rice-growing season. Anal Bioanal Chem 387:1479–1488CrossRefGoogle Scholar
  60. Velez C, Pires A, Sampaio L, Cardoso P, Moreira A, Leandro S, Figueira E, Soares AMVM, Freitas R (2016) The use of Cerastoderma glaucum as a sentinel and bioindicator species: take-home message. Ecol Indic 62:228–241CrossRefGoogle Scholar
  61. Wheelock CE, Nakagawa Y (2010) Carboxylesterases—from function to the field: an overview of carboxylesterase biochemistry, structure–activity relationship, and use in environmental field monitoring. J Pestic Sci 35(3):215–217CrossRefGoogle Scholar
  62. Wheelock CE, Shan G, Ottea J (2005) Overview of carboxylesterases and their role in the metabolism of insecticides. J Pestic Sci 30(2):75–83CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut of Marine Sciences (ICM-CSIC)BarcelonaSpain
  2. 2.Institute of Research and Technology Food and Agriculture (IRTA)TarragonaSpain
  3. 3.Water and Soil Quality Research Group (IDAEA-CSIC), Department of Environmental ChemistryBarcelonaSpain

Personalised recommendations