Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 2, pp 1558–1564 | Cite as

Enantioselective degradation of the chiral alpha-cypermethrin and detection of its metabolites in five plants

  • Guojun Yao
  • Jing Gao
  • Chuntao Zhang
  • Wenqi Jiang
  • Peng Wang
  • Xueke Liu
  • Donghui Liu
  • Zhiqiang ZhouEmail author
Research Article
  • 67 Downloads

Abstract

Alpha-cypermethrin (α-cypermethrin), an important chiral pyrethroid insecticide, is frequently detected in human samples. Because of the possible human health risks caused by α-cypermethrin, we studied dynamics, residues, and metabolism of α-cypermethrin in five common vegetables (tomato, cucumber, rape, cabbage, and pepper) on enantiomeric levels after foliar spray. α-Cypermethrin was qualified by a HP-5 column and its enantiomers could be separated by gas chromatograph (GC) using a BGB-172 chiral column. The results of degradation showed that α-cypermethrin dissipated rapidly in vegetables with half-lives being only 2.85–8.88 days. Stereoselective degradation was observed on pepper and cucumber while the two metabolites (cis-DCCA and 3-PBA) of α-cypermethrin were not detected during its dissipation in all plants. This is the first evidence of enantioselective degradation of α-cypermethrin in the five common vegetables and the results should be considered in future environmental risk and food safety evaluations.

Keywords

Enantioselective Degradation Metabolites Alpha-cypermethrin Plants 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Contract Grants: 21337005).

References

  1. Baker SE, Olsson AO, Barr DB (2004) Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides. Arch Environ Contam Toxicol 46:281CrossRefGoogle Scholar
  2. Sereda B, Bouwman H, Kylin H (2009) Comparing water, bovine milk, and indoor residual spraying as possible sources of DDTand pyrethroid residues in breast milk. J Toxicol Environ Health 72:842–851CrossRefGoogle Scholar
  3. Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: national health and nutrition examination survey 1999–2002. Environ Health Perspect 118:742–748CrossRefGoogle Scholar
  4. Bergerpreiss E, Levsen K, Leng G, Idel H, Sugiri D, Ranft U (2002) Indoor pyrethroid exposure in homes with woollen textile floor coverings. Int J Hyg Environ Health 205:459–472CrossRefGoogle Scholar
  5. Diao J, Xu P, Liu D, Lu Y, Zhou Z (2011) Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida. J Hazard Mater 192:1072–1078CrossRefGoogle Scholar
  6. Du G, Shen O, Hong S, Fei J, Lu C, Ling S, Xia Y, Wang S, Wang X (2010) Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicol Sci 116:58–66CrossRefGoogle Scholar
  7. Gottardi M, Birch MR, Dalhoff K, Cedergreen N (2017) The effects of epoxiconazole and α-cypermethrin on Daphnia magna growth, reproduction, and offspring size. Environ Toxicol Chem 36:2155–2166CrossRefGoogle Scholar
  8. Hardt J, Angerer J (2003) Biological monitoring of workers after the application of insecticidal pyrethroids. Int Arch Occup Environ Health 76:492–498Google Scholar
  9. Heudorf U, Angerer J (2001) Metabolites of pyrethroid insecticides in urine specimens: current exposure in an urban population in Germany. Environ Health Perspect 109:213–217CrossRefGoogle Scholar
  10. Jin Y, Zheng S, Fu Z (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol 30:1049–1054CrossRefGoogle Scholar
  11. Jin Y, Zhang P, Wang X, Xu M, Wang Y, Zhou Z, Zhu W (2015) Stereoselective degradation of alpha-Cypermethrin and its enantiomers in rat liver microsomes. Chirality 28:58–64Google Scholar
  12. Knaak JB, Dary CC, Zhang X, Gerlach RW, Tornero-Velez R, Chang DT, Goldsmith R, Blancato JN (2012): Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. Springer New York, 1–114 ppGoogle Scholar
  13. Leahey JP (1979) The metabolism and environmental degradation of the pyrethroid insecticides. Outlook Agric 10:135–142CrossRefGoogle Scholar
  14. Leicht W, Fuchs R, Londershausen M (2015) Stability and biological activity of cyfluthrin isomers. Pest Manag Sci 48:325–332CrossRefGoogle Scholar
  15. Liu W, Gan JJ, Lee S, Werner I (2004) Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. J Agric Food Chem 52:6233–6238CrossRefGoogle Scholar
  16. Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci U S A 102:701–706CrossRefGoogle Scholar
  17. Łozowicka B, Jankowska M, Kaczyński P (2012) Pesticide residues in Brassica vegetables and exposure assessment of consumers. Food Control 25:561–575CrossRefGoogle Scholar
  18. Mckinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183CrossRefGoogle Scholar
  19. Meeker JD, Barr DB, Hauser R (2009) Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod Toxicol 27:155–160CrossRefGoogle Scholar
  20. Metwally ES, Osman MS, Al-Rushaid R (1997) A high-performance liquid chromatographic method for the determination of cypermethrin in vegetables and its application to kinetic studies after greenhouse treatment. Food Chem 59:283–290CrossRefGoogle Scholar
  21. Moore A, Waring CP (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol 52:1–12CrossRefGoogle Scholar
  22. Mueller MD, Buser HR (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective degradation in sewage sludge and soil. Environ Sci Technol 29:2031–2037CrossRefGoogle Scholar
  23. Naeher LP, Tulve NS, Egeghy PP, Barr DB, Adetona O, Fortmann RC, Needham LL, Bozeman E, Hilliard A, Sheldon LS (2010) Organophosphorus and pyrethroid insecticide urinary metabolite concentrations in young children living in a southeastern United States city. Sci Total Environ 408:1145–1153CrossRefGoogle Scholar
  24. Qu H, Wang P, Ma RX, Qiu XX, Xu P, Zhou ZQ, Liu DH (2014) Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Sci Total Environ 485:415–420CrossRefGoogle Scholar
  25. Schettgen T, Heudorf U, Drexler H, Angerer J (2002) Pyrethroid exposure of the general population-is this due to diet. Toxicol Lett 134:141–145CrossRefGoogle Scholar
  26. Singleton ST, Lein PJ, Farahat FM, Farahat T, Bonner MR, Knaak JB, Olson JR (2014) Characterization of α-cypermethrin exposure in Egyptian agricultural workers. Int J Hyg Environ Health 217:538–545CrossRefGoogle Scholar
  27. Smith SW (2009) Chiral toxicology: it’s the same thing...only different. Toxicol Sci 110:4–30CrossRefGoogle Scholar
  28. Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659CrossRefGoogle Scholar
  29. Starr J, Graham S, Andrews K, Nishioka M (2008) Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers. Environ Res 108:271–279CrossRefGoogle Scholar
  30. Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR (2007) Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 66:474–479CrossRefGoogle Scholar
  31. Sun M, Liu D, Zhou G, Li J, Qiu X, Zhou Z, Wang P (2012) Enantioselective degradation and chiral stability of malathion in environmental samples. J Agric Food Chem 60:372–379CrossRefGoogle Scholar
  32. Tyler CR, Beresford N, Woning MVD, Sumpter JP, Thorpe K (2000) Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem 19:801–809CrossRefGoogle Scholar
  33. Velisek J, Wlasow T, Gomulka P, Svobodova Z, Dobsikova R, Novotny L, Dudzik M (2006): Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina - UZPI (Czech Republic) 51: 469Google Scholar
  34. Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78CrossRefGoogle Scholar
  35. Worthing CR, Walker SB (1983) The pesticide manual, a world compendium. British Crop Protection CouncilGoogle Scholar
  36. Xia Y, Han Y, Wu B, Wang S, Gu A, Lu N, Bo J (2008) The relation between urinary metabolite of pyrethroid insecticides and semen quality in humans. Fertil Steril 89:1743–1750CrossRefGoogle Scholar
  37. Xu P, Huang L (2017) Effects of α-cypermethrin enantiomers on the growth, biochemical parameters and bioaccumulation in Rana nigromaculata tadpoles of the anuran amphibians. Ecotoxicol Environ Saf 139:431–438CrossRefGoogle Scholar
  38. Yao G, Xu J, Wang P, Liu X, Zhou Z, Liu D (2015) Chiral insecticide α-cypermethrin and its metabolites: stereoselective degradation behavior in soils and the toxicity to earthworm eisenia fetida. J Agric Food Chem 63:7714–7720CrossRefGoogle Scholar
  39. Ye J, Zhao M, Niu L, Liu W (2015) Enantioselective environmental toxicology of chiral pesticides. Chem Res Toxicol 28:325–338CrossRefGoogle Scholar
  40. Ye M, Beach J, Martin JW, Senthilselvan A (2016) Urinary concentrations of pyrethroid metabolites and its association with lung function in a Canadian general population. Occup Environ Med 73:119–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guojun Yao
    • 1
  • Jing Gao
    • 1
  • Chuntao Zhang
    • 1
  • Wenqi Jiang
    • 1
  • Peng Wang
    • 1
  • Xueke Liu
    • 1
  • Donghui Liu
    • 1
  • Zhiqiang Zhou
    • 1
    • 2
    Email author
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied ChemistryChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.College of ScienceChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations