Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36555–36569 | Cite as

WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data

  • Taciana Toledo de Almeida Albuquerque
  • Maria de Fátima Andrade
  • Rita Yuri Ynoue
  • Davidson Martins Moreira
  • Willian Lemker Andreão
  • Fábio Soares dos Santos
  • Erick Giovani Sperandio Nascimento
Research Article

Abstract

Atmospheric pollutants are strongly affected by transport processes and chemical transformations that alter their composition and the level of contamination in a region. In the last decade, several studies have employed numerical modeling to analyze atmospheric pollutants. The objective of this study is to evaluate the performance of the WRF-SMOKE-CMAQ modeling system to represent meteorological and air quality conditions over São Paulo, Brazil, where vehicular emissions are the primary contributors to air pollution. Meteorological fields were modeled using the Weather Research and Forecasting model (WRF), for a 12-day period during the winter of 2008 (Aug. 10th–Aug. 22nd), using three nested domains with 27-km, 9-km, and 3-km grid resolutions, which covered the most polluted cities in São Paulo state. The 3-km domain was aligned with the Sparse Matrix Operator Kernel Emissions (SMOKE), which processes the emission inventory for the Models-3 Community Multiscale Air Quality Modeling System (CMAQ). Data from an aerosol sampling campaign was used to evaluate the modeling. The PM10 and ozone average concentration of the entire period was well represented, with correlation coefficients for PM10, varying from 0.09 in Pinheiros to 0.69 in ICB/USP, while for ozone, the correlation coefficients varied from 0.56 in Pinheiros to 0.67 in IPEN. However, the model underestimated the concentrations of PM2.5 during the experiment, but with ammonium showing small differences between predicted and observed concentrations. As the meteorological model WRF underestimated the rainfall and overestimated the wind speed, the accuracy of the air quality model was expected to be below the desired value. However, in general, the CMAQ model reproduced the behavior of atmospheric aerosol and ozone in the urban area of São Paulo.

Keywords

Air quality modeling CMAQ SMOKE WRF Measurement campaign Aerosol Ozone 

Notes

Funding information

This research was partially funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

References

  1. Albuquerque TT, Andrade MF, Ynoue RY (2012) Characterization of atmospheric aerosols in the city of São Paulo, Brazil: comparisons between polluted and unpolluted periods. Environ Monit Assess 184:969–984.  https://doi.org/10.1007/s10661-011-2013-y CrossRefGoogle Scholar
  2. Alonso MF, Longo K, Freitas S, Fonseca R, Marécal V, Pirre M, Klenner L (2010) An urban emission inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmos Environ 44:5072–5083.  https://doi.org/10.1016/j.atmosenv.2010.09.013 CrossRefGoogle Scholar
  3. Alves CA, Lopes DJ, Calvo AI, Evtyugina M, Rocha S, Nunes T (2015) Emissions from light-duty diesel and gasoline in-use vehicles measured on chassis dynamometer test cycles. Aerosol and Air Qual Res 15:99–116.  https://doi.org/10.4209/aaqr.2014.01.0006 CrossRefGoogle Scholar
  4. Alvim DS, Gatti LV, Corrêa SM, Chiquetto JB, Rossatti CS, Pretto A, Santos MH, Yamazaki A, Orlando JP, Santos GM (2017) Main ozone-forming VOCs in the city of Sao Paulo: observations, modelling and impacts. Air Qual Atmos Health 10:421–435.  https://doi.org/10.1007/s11869-016-0429-9 CrossRefGoogle Scholar
  5. Andrade MF, Miranda RM, Fornaro A, Kerr A, Oyama B, Andre PA, Saldiva P (2012) Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:79–88.  https://doi.org/10.1007/s11869-010-0104-5 CrossRefGoogle Scholar
  6. Andrade MF, Ynoue RY, Freitas ED, Todesco E, Vara Vela A, Ibarra S, Martins LD, Martins JA, Carvalho VSB (2015) Air quality forecasting system for southeastern Brazil. Front Environ Sci 23:1–14.  https://doi.org/10.3389/fenvs.2015.00009 CrossRefGoogle Scholar
  7. Andrade MF, Kumar P, Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, Miranda RM, Albuquerque T, Gonçalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82.  https://doi.org/10.1016/j.atmosenv.2017.03.051 CrossRefGoogle Scholar
  8. Appel KW, Napelenok SL, Foley KM, Pye HOT, Hogrefe C, Luecken DJ, Bash JO, Roselle SR, Pleim JE, Foroutan H, Hutzell WT, Pouliot GA, Sarwar G, Fahey KM, Gantt B, Gilliam RC, Heath NK, Kang D, Mathur R, Schwede DB, Spero TL, Wong DC, Young JO (2017) Description and evaluation of the community multiscale air quality (CMAQ) modeling system version 5.1. Geosci Model Dev 10:1703–1732.  https://doi.org/10.5194/gmd-10-1703-2017 CrossRefGoogle Scholar
  9. Binkowski FS, Shankar U (1995) The regional particulate matter model: 1. Model description and preliminary results. J Geophys Res-Atmos 100:26191–26209.  https://doi.org/10.1029/95JD02093 CrossRefGoogle Scholar
  10. Borge R, López J, Lumbreras J, Narros A, Rodríguez E (2010) Influence of boundary conditions on CMAQ simulations over the Iberian Peninsula. Atmos Environ 44:2681–2695.  https://doi.org/10.1016/j.atmosenv.2010.04.044 CrossRefGoogle Scholar
  11. Borge R, Lumbreras J, Pérez J, de la Paz D, Vedrenne M, de Andrés JM, Rodríguez ME (2014) Emission inventories and modeling requirements for the development of air quality plans. Application to Madrid (Spain). Sci Total Environ 466-467:809–819.  https://doi.org/10.1016/j.scitotenv.2013.07.093 CrossRefGoogle Scholar
  12. Borge R, Lumbreras J, Rodríguez E (2008) Development of a high-resolution emission inventory for Spain using the SMOKE Modelling system: a case study for the years 2000 and 2010. Environ Model Softw 23:1026–1044.  https://doi.org/10.1016/j.envsoft.2007.11.002 CrossRefGoogle Scholar
  13. Byun D, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Appl Mech Rev 59:51–77.  https://doi.org/10.1115/1.2128636 CrossRefGoogle Scholar
  14. Castanho ADA, Artaxo P (2001) Wintertime and summertime São Paulo aerosol source apportionment study. Atmos Environ 35:4889–4902.  https://doi.org/10.1016/S1352-2310(01)00357-0 CrossRefGoogle Scholar
  15. Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, Forastiere F (2013) Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Persp 121:324–331.  https://doi.org/10.1289/ehp.1205862 CrossRefGoogle Scholar
  16. CETESB (2009) Qualidade do ar no estado de São Paulo, 2008. Companhia Ambiental do Estado de São Paulo (São Paulo State Environmental Protection Agency). http://ar.cetesb.sp.gov.br/publicacoes-relatorios/ (accessed April 20, 2018)
  17. CETESB (2017) Qualidade do ar no estado de São Paulo, 2016. Companhia Ambiental do Estado de São Paulo (São Paulo State Environmental Protection Agency). http://ar.cetesb.sp.gov.br/publicacoes-relatorios/ (accessed April 20,2018)
  18. Chen D, Liu X, Lang J, Zhou Y, Wei L, Wang X, Guo X (2017) Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China plain. Sci Total Environ 583:280–291.  https://doi.org/10.1016/j.scitotenv.2017.01.066 CrossRefGoogle Scholar
  19. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA III, Shin H, Straif K, Shaddick G, Thomas M, Van Dingenen R, Van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389:1907–1918.  https://doi.org/10.1016/S0140-6736(17)30505-6 CrossRefGoogle Scholar
  20. Crouse DL, Peters PA, Van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion O, Khan S, Atari DO, Jerrett M, Pope CA III, Brauer M, Brook JR, Martin RV, Stieb D, Burnett RT (2012) Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environ Health Persp 120:708–714.  https://doi.org/10.1289/ehp.1104049 CrossRefGoogle Scholar
  21. Fraser MP, Cass GR (1998) Detection of excess ammonia emissions from in-use vehicles and the implications for fine particle control. Environ Sci Technol 32:1053–1057.  https://doi.org/10.1021/es970382h CrossRefGoogle Scholar
  22. Gouveia N, Junger WL (2018) Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environ Pollut 232:385–391.  https://doi.org/10.1016/j.envpol.2017.08.125 CrossRefGoogle Scholar
  23. Grell GA, Peckham SE, Schmitz R, Mckeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975.  https://doi.org/10.1016/j.atmosenv.2005.04.027 CrossRefGoogle Scholar
  24. Hetem IG, Andrade MF (2016) Characterization of fine particulate matter emitted from the resuspension of road and pavement dust in the metropolitan area of São Paulo, Brazil. Atmosphere 7(31):1–10.  https://doi.org/10.3390/atmos7030031 CrossRefGoogle Scholar
  25. Hogrefe C, Roselle SJ, Bash JO (2017) Persistence of initial conditions in continental scale air quality simulations. Atmos Environ 160:36–45.  https://doi.org/10.1016/j.atmosenv.2017.04.009 CrossRefGoogle Scholar
  26. Hoshyaripour G, Brasseur G, Andrade MF, Gavidia-Calderón M, Bouarar I, Ynoue RY (2016) Prediction of ground-level ozone concentration in São Paulo, Brazil: deterministic versus statistic models. Atmos Environ 145:365–375.  https://doi.org/10.1016/j.atmosenv.2016.09.061 CrossRefGoogle Scholar
  27. Jiang X, Yoo E (2018) The importance of spatial resolutions of community multiscale air quality (CMAQ) models on health impact assessment. Sci Total Environ 627:1528–1543.  https://doi.org/10.1016/j.scitotenv.2018.01.228 CrossRefGoogle Scholar
  28. Johnson TM, Guttikunda S, Wells GJ, Artaxo P, Bond TC, Russell AG, Watson JG, West J (2011) Tools for improving air quality management: a review of top-down source apportionment techniques and their application in developing countries. World Bank Energy Sector Management Assistance Program, Formal Report 339/11, The World Bank Group, Washington, DCGoogle Scholar
  29. Jun M, Stein ML (2004) Statistical comparison of observed and CMAQ modeled daily sulfate levels. Atmos Environ 38(27):4427–4436.  https://doi.org/10.1016/j.atmosenv.2004.05.019 CrossRefGoogle Scholar
  30. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, Pope III CA, Thurston G, Calle EE, Thun MJ (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. HEI Research Report 140. Boston: Health Effects InstituteGoogle Scholar
  31. Laden F, Schwartz J, Speizer FE, Dockery DW (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard six cities study. Am J Resp Crit Care 173:667–672.  https://doi.org/10.1164/rccm.200503-443OC CrossRefGoogle Scholar
  32. Lents J, Nikkila N, Osses M, Davis N (2004) São Paulo vehicle activity study. International Sustainable Systems Research Center (ISSRC), California, USA, 86 p. Center (ISSRC), California, EUA, 86pGoogle Scholar
  33. Li J, Zhang M, Tang G, Wu F, Alvarado LMA, Vrekoussis M, Richter A, Burrows JP (2018) Investigating missing sources of glyoxal over China using a regional air quality model (RAMS-CMAQ). J Environ Sci 71:108–118.  https://doi.org/10.1016/j.jes.2018.04.021 CrossRefGoogle Scholar
  34. Longo KM, Thompson AM, Kirchhoff VWJH, Remer LA, Freitas SR, Dias MAFS, Artaxo P, Hart W, Spinhirne JD, Yamasoe MA (1999) Correlation between smoke and tropospheric ozone concentration in Cuiabá during smoke, clouds, and radiation-Brazil (SCAR-B). J Geophys Res-Atmos 104:12113–12129.  https://doi.org/10.1029/1999JD900044 CrossRefGoogle Scholar
  35. Martins LD, Andrade MF, Freitas ED, Pretto A, Gatti LV, Albuquerque EL, Tomaz E, Guardani ML, Martins MHRB, Junior OMA (2006) Emission factors for gas-powered vehicles traveling through road tunnels in São Paulo, Brazil. Environ Sci Techno 40:6722–6729.  https://doi.org/10.1021/es052441u CrossRefGoogle Scholar
  36. Martins JA, Martins LD, Freitas ED, Mazzoli CR, Hallak R, Andrade MF (2008) Aplicação de imagens de satélite no desenvolvimento de inventários de Emissão de alta resolução. Paper presented at the XV Congresso Brasileiro De Meteorologia. São Paulo, BrazilGoogle Scholar
  37. Martins JA, Mazzoli CR, Oliveira MGL, Ynoue RY, Andrade MF, Freitas ED, Martins LD (2010) Desenvolvimento de inventários de emissão de alta resolução: Intensidade de luzes noturnas e distribuição espacial de veículos. Paper presented at the XVI Congresso Brasileiro de Meteorologia. Belém, BrazilGoogle Scholar
  38. Miranda RM, Andrade MF, Fornaro A, Astolfo R, de Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:63–77, 2012.  https://doi.org/10.1007/s11869-010-0124-1 CrossRefGoogle Scholar
  39. Nenes A, Pandis SN, Pilinis C (1998) ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geoch 4:123–152.  https://doi.org/10.1023/A:1009604003981 CrossRefGoogle Scholar
  40. Nenes A, Pilinis C, Pandis SN (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos Env 33:1553–1560.  https://doi.org/10.1016/S1352-2310(98)00352-5 CrossRefGoogle Scholar
  41. Pacheco MT, Parmigiani MMM, Andrade MF, Morawska L, Kumar P (2017) A review of emissions and concentrations of particulate matter in the three metropolitan areas of Brazil. J Transp Health 4:53–72.  https://doi.org/10.1016/j.jth.2017.01.008 CrossRefGoogle Scholar
  42. Pepe N, Pirovano G, Lonati G, Balzarini A, Toppetti A, Riva GM, Bedogni M (2016) Development and application of a high resolution hybrid modelling system for the evaluation of urban air quality. Atmos Environ 141:297–311.  https://doi.org/10.1016/j.atmosenv.2016.06.071 CrossRefGoogle Scholar
  43. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141.  https://doi.org/10.1001/jama.287.9.1132 CrossRefGoogle Scholar
  44. Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77.  https://doi.org/10.1161/01.CIR.0000108927.80044.7F CrossRefGoogle Scholar
  45. Reid JS, Hobbs PV, Liousse C, Martins JV, Weiss RE, Eck TF (1998) Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. J Geophys Res-Atmos 103:32031–32040.  https://doi.org/10.1029/98JD00773 CrossRefGoogle Scholar
  46. Samaali M, Moran MD, Bouchet VS, Pavlovic R, Cousineau S, Sassi M (2009) On the influence of chemical initial and boundary conditions on annual regional air quality model simulations for North America. Atmos Environ 43:4873–4885.  https://doi.org/10.1016/j.atmosenv.2009.07.019 CrossRefGoogle Scholar
  47. Sánchez-Ccoyllo OR, Ynoue RY, Martins LD, Astolfo R, Miranda RM, Freitas ED, Borges AS, Fornaro A, Freitas H, Moreira A, Andrade MF (2009) Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ Monit Assess 149:241–249.  https://doi.org/10.1007/s10661-008-0198-5 CrossRefGoogle Scholar
  48. Seinfeld JH, Pandis NS (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley – Interscience Publication, USAGoogle Scholar
  49. Silva Junior RS, Andrade MF (2013) Validação de poluentes fotoquímicos e inclusão do inventário de emissões no modelo de qualidade do ar WRF/CHEM, para a região metropolitana de São Paulo. Rev Brasil Meteorol 28:105–121.  https://doi.org/10.1590/S0102-77862013000100010 CrossRefGoogle Scholar
  50. Shimada S, Ohsawa T, Chikaoka S, Kozai K (2011) Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. SOLA 7:109–112.  https://doi.org/10.2151/sola.2011-028 CrossRefGoogle Scholar
  51. Syrakov D, Prodanova M, Georgieva E, Etropolska I, Slavov K (2016) Simulation of European air quality by WRF–CMAQ models using AQMEII-2 infrastructure. J Comput Appl Math 293:232–245.  https://doi.org/10.1016/j.cam.2015.01.032 CrossRefGoogle Scholar
  52. The World Bank (2018) Urban population (% of total). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed April 20, 2018)
  53. Vara Vela A, Andrade MF, Kumar P, Ynoue RY, Muñoz AG (2016) Impact of vehicular emissions on the formation of fine particles in the Sao Paulo metropolitan area: a numerical study with the WRF-Chem model. Atmos Chem Phys 16:777–797.  https://doi.org/10.5194/acp-16-777-2016 CrossRefGoogle Scholar
  54. Yarwood G, Rao S, Yocke M, Whitten G (2005) Updates to the carbon bond chemical mechanism: CB05. Final Report to the US EPA, RT-0400675. Available at http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf
  55. Ynoue RY, Andrade MF (2004) Size-resolved mass balance of aerosol particles over the São Paulo metropolitan area of Brazil. Aerosol Sci Technol 38(S2):52–62.  https://doi.org/10.1080/02786820490466756 CrossRefGoogle Scholar
  56. Wang L, Wei Z, Wei W, Fu JS, Meng C, Ma S (2015a) Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos Environ 122:723–736.  https://doi.org/10.1016/j.atmosenv.2015.10.041 CrossRefGoogle Scholar
  57. Wang Z, Pan L, Li Y, Zhang D, Ma J, Sun F, Xu W, Wang X (2015b) Assessment of air quality benefits from the National Pollution Control Policy of thermal power plants in China: a numerical simulation. Atmos Environ 106:288–304.  https://doi.org/10.1016/j.atmosenv.2015.01.022 CrossRefGoogle Scholar
  58. Zang H, Pu Z, Zang X (2013) Examination of errors in near-surface temperature and Wind from WRF numerical simulations in regions of complex terrain. Weather Forecast 28:893–914.  https://doi.org/10.1175/WAF-D-12-00109.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taciana Toledo de Almeida Albuquerque
    • 1
    • 2
  • Maria de Fátima Andrade
    • 3
  • Rita Yuri Ynoue
    • 3
  • Davidson Martins Moreira
    • 2
    • 4
  • Willian Lemker Andreão
    • 1
  • Fábio Soares dos Santos
    • 1
  • Erick Giovani Sperandio Nascimento
    • 4
  1. 1.Federal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Federal University of Espírito SantoVitóriaBrazil
  3. 3.University of São PauloSão PauloBrazil
  4. 4.SENAI CIMATECSalvadorBrazil

Personalised recommendations