Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36287–36297 | Cite as

Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health

  • Zakaria A. Mohamed
  • Asmaa Bakr
Research Article

Abstract

Unlike microcystin, cylindrospermospin (CYN) concentrations in fishpond water and their accumulation in fish tissues have been largely unexplored. This study determined CYN levels in water and tilapia fish organs from three tropical fishponds in southern Egypt. Water and fish samples were collected monthly from fishponds for 12 months (Oct 2012 to Sep 2013). The results revealed that six CYN-producing species of cyanobacteria dominated phytoplankton populations and formed blooms in these fishponds during warm months. Among these species, Anabaena affinis, Planktothrix agardhii, Cylindrospermopsis catemaco, and C. philippinensis were assigned as CYN producers for the first time in the present study. The highest cell densities of CYN-producing species in fishponds were recorded in August and September 2013, correlating with high temperature, pH and nutrient concentrations. Dissolved CYN was found in fishpond waters at levels (0.3–2.76 μg L−1) very close to those of particulate CYN (0.4–2.37 μg L−1). CYN was also estimated in tilapia fish organs at levels up to 417 ng g−1 in the intestines, 1500 ng g−1 in the livers, and 280 ng g−1in edible muscles. Compared to the recommended guideline (0.03 μg kg−1 day−1), the estimated daily intake (EDI) of CYN in our samples of edible muscles exceeded this limit by a factor of 1.3–14 during summer and autumn. This might represent a risk to human health upon consumption of such contaminated fish muscles. Therefore, fishponds worldwide should be monitored for the presence toxic cyanobacteria to protect humans from their potent toxins.

Keywords

Cyanobacteria Cylindrospermopsin Health risk Fish Cyanotoxins 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Antal O, Karisztl-Gácsi M, Farkas A, Kovács A, TörT AAN, Kiss G, Saker ML, Tri JG, Bánfalvi G, Vehovszky Á (2011) Screening the toxic potential of Cylindrospermopsis raciborskii strains isolated from Lake Balaton. Hungary Toxicon 57:831–840CrossRefGoogle Scholar
  2. APHA (1995) Standard methods for the examination of water and wastewater, 14th edn. American Public Health Association, USAGoogle Scholar
  3. Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K, Aubel M, LePrell R, Chapman A, Foss A, Corum S, Hill VR, Kieszak SM, Cheng YS (2010) Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 55:909–921CrossRefGoogle Scholar
  4. Baron-Sola A, Ouahid Y, delCampo FF (2012) Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Ecotoxicol Environ Safe 75:102–108CrossRefGoogle Scholar
  5. Bazin E, Mourot A, Humpage AR, Fessard V (2010) Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environ Molecul Mutagen 51:251–259Google Scholar
  6. Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 55:930–938CrossRefGoogle Scholar
  7. Berry JP, Jaja-Chimedza A, Dávalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Additiv Contam: Part A 29:314–321CrossRefGoogle Scholar
  8. Bormans M, Lengronne M, Brient L, Duval C (2014) Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. Bull Environ Contam Toxicol 92:243–247CrossRefGoogle Scholar
  9. Brient L, Lengronne M, Bormans M, Fastner J (2009) First occurrence of cylindrospermopsin in freshwater in France. Environ Toxicol 24:415–420CrossRefGoogle Scholar
  10. Burford MA, Davis TW (2011) Physical and chemical processes promoting dominance of the toxic cyanobacterium Cylindrospermopsis raciborskii. Chin J Oceanol Limnol 29:883–891CrossRefGoogle Scholar
  11. Burford MA, Mcneale KL, Mckenzie-smith FJ (2006) The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir. Freshw Biol 51:2143–2153CrossRefGoogle Scholar
  12. Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: cyan toxins. J Appl Bacteriol 72:445–459Google Scholar
  13. Deblois CP, Aranda-Rodriguez R, Giani A, Bird DF (2008) Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51:435–448CrossRefGoogle Scholar
  14. Dyble J, Gossiaux D, Landrum P, Kashian DR, Pothoven S (2011) A kinetic study of accumulation and elimination of microcystin-LR in yellow perch (Perca flavescens) tissue and implications for human fish consumption. Mar Drugs 9:2553–2571CrossRefGoogle Scholar
  15. Fadel A, Atoui I, Bruno J, Lemaire R, Vinçon-Leite B, Slim K (2014) Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir. Toxins 6:3041–3057CrossRefGoogle Scholar
  16. Falconer IR, Humpage AR (2006) Cyanobacterial (blue green algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21:299–304CrossRefGoogle Scholar
  17. Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (cyanobacteria) isolates. Toxicon 42:313–321CrossRefGoogle Scholar
  18. Fergusson KM, Saint CP (2003) Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin producing cyanobacteria. Environ Toxicol 18:120–125CrossRefGoogle Scholar
  19. Figueredo CC, Giani A (2009) Phytoplankton community in the tropical lake of Lagoa 863 Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnol 39:264–272CrossRefGoogle Scholar
  20. Guzman-Guillen R, Moreno I, Prieto Ortega AI, Eugenia Soria-Diaz M, Vasconcelos V, Camean AM (2015) CYN determination in tissues from freshwater fish by LC-MS/MS: Validation and application in tissues from subchronically exposed tilapia (Oreochromis niloticus). Talanta 131:452–459CrossRefGoogle Scholar
  21. Guzman-Guillen R, Maisanaba S, Prieto Ortega AI, Valderrama-Fernández R, Jos Á, Cameán AM (2017a) Changes on cylindrospermopsin concentration and characterization of decomposition products in fish muscle (Oreochromis niloticus) by boiling and steaming. Food Control 77:210–220CrossRefGoogle Scholar
  22. Guzman-Guillen R, Prieto Ortega A,I, Moyano R, Blanco A, Vasconcelos V, Camean A (2017b) Dietary L-carnitine prevents histopathological changes in Tilapia (Oreochromis niloticus) exposed to cylindrospermopsin. Environ Toxicol 32:241–254CrossRefGoogle Scholar
  23. Haande S, Rohrlack T, Semyalo BP, Edvardsen B, Lyche-Solheim A, Sørensen K, Larsson P (2011) Phytoplankton dynamics and cyanobacterial dominance in Murchison Bay of Lake Victoria (Uganda) in relation to environmental conditions. Limnol 41:20–29CrossRefGoogle Scholar
  24. Hardy FJ, Johnson A, Hamel K, Preece EP (2015) Cyanotoxin bioaccumulation in freshwater fish, Washington state. USA Environ Monit Assess 187:667CrossRefGoogle Scholar
  25. Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18:94–103CrossRefGoogle Scholar
  26. Humpage AR, Fenech M, Thomas P, Falconer IR (2000) Micronucleus induction and chromosome loss in WIL2-NS cells exposed to the cyanobacterial toxin, cylindrospermopsin. Mutat Res 472:155–161Google Scholar
  27. Huszar VLM, Silva LHS, Marinho M, Domingos P, Sant’Anna CL (2000) Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiol 424:67–77Google Scholar
  28. Janse JH, Scheffer M, Lijklema L, Van Liere L, Sloot JS, Mooij WM (2010) Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: sensitivity. calibration and uncertainty Ecol Model 221:654–665CrossRefGoogle Scholar
  29. Kinnear S (2010) Cylindrospermopsin: a decade of progress on bioaccumulation research. Marine Drugs 8:542–456CrossRefGoogle Scholar
  30. Kokociński M, Mankiewicz-Boczek J, Jurczak T, Spoof L, Meriluoto J, Rejmonczyk E (2013) Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ Sci Pollut Res 20:5243–5264CrossRefGoogle Scholar
  31. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2. Teil: Oscillatoriales. Süßwasserflora von Mitteleuropa; Band 19/2. Elsevier, Műnchen, p 759Google Scholar
  32. Komarek J, Komarkova J (2003) Phenotype diversity of the cyanoprocaryotic genus Cylindrospermopsis (Nostocales); review 2002. Czech Phycol 3:1–30Google Scholar
  33. Lei L, Peng L, Huang X, Han BP (2014) Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ. Monit Assess 186:3079–3090CrossRefGoogle Scholar
  34. Martins J, Vasconcelos V (2009) Microcystin dynamics in aquatic organisms. J Toxicol Environ Health B 12:65–82CrossRefGoogle Scholar
  35. Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Méjean A, Ploux O (2010) Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria PCC 6506; identification of the gene cluster and toxin analysis. Appl Environ Microbiol 76:4943–4949CrossRefGoogle Scholar
  36. Messineo V, Melchiorre S, Di Corcia A, Gallo P, Bruno M (2010) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano. central Italy Environ Toxicol 25:18–27Google Scholar
  37. Mohamed ZA (2007) First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranean (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbiol Ecol 59:749–761CrossRefGoogle Scholar
  38. Mohamed ZA (2016) Cyanobacterial toxins in water sources and their impacts on human health. In: McKeown A, Bugyi G (eds) Impact of water pollution on human health and environmental sustainability. IGI Global, Hershey, PA, pp 120–149CrossRefGoogle Scholar
  39. Mohamed ZA, Alamri SA (2012) Biodegradation of cylindrospermopsin toxin by microcystin-degrading bacteria isolated from cyanobacterial blooms. Toxicon 60:1390–1395CrossRefGoogle Scholar
  40. Mohamed ZA, Al-Shehri AM (2013) Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ Monitor Assess 185:2157–2166CrossRefGoogle Scholar
  41. Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141CrossRefGoogle Scholar
  42. OECD (1982) Eutrophication of waters - monitoring, assessment and control, ParisGoogle Scholar
  43. Paerl HW, Fulton RS (2006) Ecology of harmful cyanobacteria. In: Graneli E, Turner JT (ed) Ecology of harmful marine algae. Springer-Verlag, Berlin, pp 95–107Google Scholar
  44. Paerl HW, Otten TG (2013) Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in lake Taihu, China: implications for water quality management. Environ Sci Technol 46:3480–3488Google Scholar
  45. Pichardo S, Devesa V, Puerto M, Vélez D, Cameán AM (2017) Intestinal transport of cylindrospermopsin using the Caco-2 cell line. Toxicol in Vitro 38:142–149CrossRefGoogle Scholar
  46. Recknagel F, Orr P, Cao H (2014) Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation. Harmful Algae 31:26–34CrossRefGoogle Scholar
  47. Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, GermanyGoogle Scholar
  48. Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon dominated temperate lakes. Toxicon 50:800–809CrossRefGoogle Scholar
  49. Rzymski P, Poniedziałek B, Kokociski M (2014) Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8CrossRefGoogle Scholar
  50. Saker ML, Eaglesham GK (1999) The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon 37:1065–1077CrossRefGoogle Scholar
  51. Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycol 39:349–354CrossRefGoogle Scholar
  52. Saker ML, Metcalf JS, Codd GA, Vasconcelos VM (2004) Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon 43:185–194CrossRefGoogle Scholar
  53. Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium, Cylindrospermopsis raciborskii. Environ Toxicol 16:413–421CrossRefGoogle Scholar
  54. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shawe G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6:73–80CrossRefGoogle Scholar
  55. Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  56. Sotton B, Domaizon I, Anneville O, Cattanéo F, Guillard J (2015) Nodularin and cylindrospermopsin: a review of their effects on fish. Rev Fish Biol Fisheries 25:1–19CrossRefGoogle Scholar
  57. Spoof L, Berg KA, Rapala J, Lathi K, Lepisto L, Metcalf JS, Codd GA, Meuilotot J (2006) First observation of cylindrospermospin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21:552–560CrossRefGoogle Scholar
  58. Sprőber P, Shafik HM, Présing M, Kovács AW, Herodek S (2003) Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions. Hydrobiol 506-509:169–174CrossRefGoogle Scholar
  59. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue green algae (order Chroococcales). Bacteriol Rev 35:171–205Google Scholar
  60. Svirčev Z, Lujić J, Marinović Z, Drobac D, Tokodi N, Stojiljković B, Meriluoto J (2015) Toxicopathology induced by microcystins and nodularin: a histopathological review. J Environ Sci Health, Part C 33:125–167CrossRefGoogle Scholar
  61. Talling JF, Driver O (1963) Some problems in the estimation of chlorophyll a in phytoplankton. In: Dotty M (ed) Primary productivity measurements, marine and freshwater. US Atomic Energy Commission, Washington, DC, pp 142–146Google Scholar
  62. Viktória B, Vasas G, Dobronoki D, Gonda S, Nagy S, Bácsi I (2015) Effects of cylindrospermopsin producing cyanobacterium and its crude extracts on a benthic green alga—competition or allelopathy? Marine Drugs 13:6703–6722CrossRefGoogle Scholar
  63. Wiedner C, Rucker J, Fastner J, Chorus I, Nixdorf B (2008) Seasonal dynamics of cylindrospermopsin and cyanobacteria in two German lakes. Toxicon 52:677–686CrossRefGoogle Scholar
  64. Wormer L, Cires A, Carrasco D, Quesada A (2008) Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae 7:206–213CrossRefGoogle Scholar
  65. Zagatto PA, Buratini SA, Aragão M, Ferrão-Filho AS (2012) Neurotoxicity of two Cylindrospermopsis raciborskii strains to mice, daphnia and fish. Environ Toxicol Chem 31:857–862CrossRefGoogle Scholar
  66. Zhang D, Xie P, Chen J (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bull Environ Contam Toxicol 84:202–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany and Microbiology, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations