Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36403–36411 | Cite as

Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp.

  • Ilona Złoch
  • Sylwia Śliwińska-Wilczewska
  • Marta Kucharska
  • Wiktoria Kozłowska
Research Article
  • 37 Downloads

Abstract

The role of macroalgal allelopathy in aquatic systems has received increasing attention as a potential means of controlling cyanobacterial blooms. However, the allelopathic activity of Chara sp. on coexisting and bloom-forming picocyanobacteria is still largely unknown. Therefore, the laboratory experiments were conducted to investigate the allelopathic activity of extracts of Chara aspera, C. baltica, and C. canescens on the growth, the fluorescence parameters: maximum and effective quantum yield of photosystem II (PSII) photochemistry (Fv/Fm and ΦPSII, respectively) and photosynthesis parameters such as the initial slope of photosynthesis-irradiance (P-E) curves (alpha) and photosynthetic capacity (Pm) of the picocyanobacterium Synechococcus sp. Batch cultures of picocyanobacterium were exposed to three concentrations of extracts originating from three charophyte cultures and the effect was followed at three sampling times. Dried specimens of C. aspera, C. baltica, and C. canescens were extracted in the water-based matrix and the initial Synechococcus sp. inoculum, derived from unialgal culture media, was used. We found both negative and positive allelopathic effects of all tested Chara extracts on Synechococcus sp. The strongest adverse impact of picocyanobacterium growth was caused by C. baltica. This study clearly demonstrated that the allelopathic effect depends on the Chara species identity. Our results also suggested that some allelopathic Chara sp. have the potential to mitigate harmful cyanobacterial blooms in systems dominated by Synechococcus sp.

Keywords

Charophytes Macroalgae Microalgae Photosynthesis Chlorophyll fluorescence Growth 

Notes

Acknowledgements

The authors would like to thank the anonymous Reviewers and Editor for their valuable comments and suggestions to improve the quality of the paper. This study was supported by BMN grants, Poland, no. 538-G245-B116-18.

References

  1. Anthoni U, Christophersen C, Øg J, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry 19(6):1228–1229CrossRefGoogle Scholar
  2. Anthoni U, Nielsen PH, Smith-Hansen L, Wium-Andersen S, Christophersen C (1987) Charamin, a quaternary ammonium ion antibiotic from the green alga Chara globularis. J Org Chem 52(4):694–695CrossRefGoogle Scholar
  3. Barreiro Felpeto A, Śliwińska-Wilczewska S, Złoch I, Vasconcelos V (2018) Light-dependent cytolysis in the allelopathic interaction between picoplanktic and filamentous cyanobacteria. J Plankton Res 40(2):165–177CrossRefGoogle Scholar
  4. Bauer N, Blaschke U, Beutler E, Gross EM, Jenett-Siems K, Siems K, Hilt S (2009) Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquat Bot 91(2):110–116CrossRefGoogle Scholar
  5. Beardall J (2008) Blooms of Synechococcus: An analysis of the problem worldwide and possible causative factors in relation to nuisance blooms in the Gippsland Lakes. Monash university 1–8Google Scholar
  6. Beilby MJ (2015) Salt tolerance at single cell level in giant-celled Characeae. Front Plant Sci 6:226CrossRefGoogle Scholar
  7. Berger J, Schagerl M (2003) Allelopathic activity of Chara aspera. Hydrobiol 501(1–3):109–115CrossRefGoogle Scholar
  8. Berger J, Schagerl M (2004) Allelopathic activity of Characeae. Biologia, Bratislava 59(1):9–15Google Scholar
  9. Callieri C (2010) Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol 69(2):257–277CrossRefGoogle Scholar
  10. Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683Google Scholar
  11. Cirujano S, Camargo JA, Gómez-Cordovés C (2004) Feeding preference of the red swamp crayfish Procambarus clarkii (Girard) on living macrophytes in a Spanish wetland. J Freshw Ecol 19(2):219–226CrossRefGoogle Scholar
  12. Dauby P, Poulicek M (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquat Bot 52:217–228CrossRefGoogle Scholar
  13. Drobnik J (2007) Herbarium and knowledge about herbaria. PWN, Warszawa. 293 pp.Google Scholar
  14. Erhard D, Gross EM (2006) Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat Bot 85(3):203–211CrossRefGoogle Scholar
  15. Ghobrial MG, Nassr HS, Kamil AW (2015) Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes. Egypt J Aquat Res 41(1):69–81CrossRefGoogle Scholar
  16. Granéli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT (eds) Ecology of harmful algae, ecological studies 189. Springer-Verlag, Berlin Heidelberg, Germany, p 189201Google Scholar
  17. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339CrossRefGoogle Scholar
  18. Gross EM, Erhard D, Iványi E (2003) Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiol 506(1):583–589CrossRefGoogle Scholar
  19. Gross EM, S, Lombardo P, Mulderij G (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton - state of the art and open questions. Hydrobiol 584(1):77–88Google Scholar
  20. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New YorkGoogle Scholar
  21. Guillard RR, Sieracki MS (2005) Counting cells in cultures with the light microscope. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 239–252Google Scholar
  22. He F, Deng P, Wu XH, Cheng SP, Gao YN, Wu ZB (2008) Allelopathic effectson Scenedesmus obliquus by two submerged macrophytes Najas minor and Potamogeton malaianus. Fresenius Environ Bull 17:92–97Google Scholar
  23. Hilt S (2006) Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat Bot 85(3):252–256CrossRefGoogle Scholar
  24. Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol 9(4):422–432CrossRefGoogle Scholar
  25. Hilt S, Ghobrial MG, Gross EM (2006) In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. J Phycol 42(6):1189–1198CrossRefGoogle Scholar
  26. Howarth R, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology 7:1–5Google Scholar
  27. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  28. Jasser I, Callieri C (2017) Picocyanobacteria: the smallest cell-size cyanobacteria. In: Meriluoto, J., Spoof, L. and Codd G. A. (eds), Handbook on cyanobacterial monitoring and cyanotoxin analysis. John Wiley & Sons, Ltd., pp. 19–27Google Scholar
  29. Joye DA, Rey-Boissezon A (2015) Will charophyte species increase or decrease their distribution in a changing climate? Aquat Bot 120:73–83CrossRefGoogle Scholar
  30. Kalmbach K (2011) Herbarium plant collection protocol. How to prepare herbarium specimens? Denver Botanic Gardens, Denver, USA, 12 pp.Google Scholar
  31. Körner S, Nicklisch A (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38(5):862–871CrossRefGoogle Scholar
  32. Krause W (1997) Süßwasserflora von Mitteleuropa. Bd. 18. Charales (Charophyceae). Jena, Stuttgart, Lubeck, Ulm, 202 pp.Google Scholar
  33. Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat Bot 72(3–4):249–260CrossRefGoogle Scholar
  34. Lake MD, Hicks BJ, Wells RDS, Dugdale TM (2002) Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiol 470(1–3):13–22CrossRefGoogle Scholar
  35. Langangen A (2000) Charophytes from the warm springs of Svalbard. Polar Res 19(2):143–153CrossRefGoogle Scholar
  36. Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75–82CrossRefGoogle Scholar
  37. Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130(4):2011–2018CrossRefGoogle Scholar
  38. Lu H, Xie H, Gong Y, Wang Q, Yang Y (2011) Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochem Syst Ecol 39(4):397–400CrossRefGoogle Scholar
  39. Mabrouk L, Hamza A, Brahim MB Bradai MN (2011) Temporal and depth distribution of microepiphytes on Posidonia oceanica (L.) Delile leaves in a meadow off Tunisia. Mar Ecol 32:148–161CrossRefGoogle Scholar
  40. Maehnert B, Schagerl M, Krenn L (2017) Allelopathic potential of stoneworts. Fottea, Olomouc 17(2):137–149CrossRefGoogle Scholar
  41. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  42. Mazur-Marzec H, Sutryk K, Kobos J, Hebel A, Hohlfeld N, Błaszczyk A, Toruńska A, Kaczkowska MJ, Łysiak-Pastuszak E, Kraśniewski W, Jasser I (2013) Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiol 701:235–252CrossRefGoogle Scholar
  43. Mulderij G, Van Donk E, Roelofs JGM (2003) Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiol 491(1):261–271CrossRefGoogle Scholar
  44. Pakdel FM, Sim L, Beardall J, Davis J (2013) Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110:24–30CrossRefGoogle Scholar
  45. Prince EK, Myers TL, Kubanek J (2008) Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnol Oceanogr 53:531–541CrossRefGoogle Scholar
  46. Rojo C, Mosquera Z, Álvarez-Cobelas M, Segura M (2017) Microalgal and cyanobacterial assemblages on charophytes: a metacommunity perspective. Fundam Appl Limnol 190(2):97–115Google Scholar
  47. Rybak AS (2016) Freshwater population of Ulva flexuosa (Ulvaceae, Chlorophyta) as a food source for great pond snail: Lymnaea stagnalis (Mollusca, Lymnaeidae). Phycol Res 64(4):207–211CrossRefGoogle Scholar
  48. Rybak AS (2018a) Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecol Indic 85:253–261CrossRefGoogle Scholar
  49. Rybak AS (2018b) The Ulva flexuosa complex (Ulvaceae, Chlorophyta): an updated identification key with special reference to the freshwater and hyperhaline taxa. Phytotaxa 345(2):83–103CrossRefGoogle Scholar
  50. Rybak AS, Gąbka M (2018) The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. J Appl Phycol 30(2):1405–1416CrossRefGoogle Scholar
  51. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre LL, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19(11):1637–1670CrossRefGoogle Scholar
  52. Schubert H, Marquardt R, Schories D, Blindow I (2015) Biogeography of Chilean charophytes. Aquat Bot 120:129–141CrossRefGoogle Scholar
  53. Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Vasconcelos V, Latała A (2017) Allelopathic activity of the picocyanobacterium Synechococcus sp. on filamentous cyanobacteria. J Exp Mar Biol Ecol 496:16–21CrossRefGoogle Scholar
  54. Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Latała A (2018) Allelopathic and bloom-forming picocyanobacteria in a changing world. Toxins 10:48.  https://doi.org/10.3390/toxins10010048 CrossRefGoogle Scholar
  55. Sorokin YI, Dallocchio F (2008) Dynamics of phosphorus in the Venice lagoon during a picocyanobacteria bloom. J Plankton Res 30(9):1019–1026CrossRefGoogle Scholar
  56. Sorokin YI, Zakuskina OY (2010) Features of the Comacchio ecosystem transformed during persistent bloom of picocyanobacteria. J Oceanogr 66:373–387CrossRefGoogle Scholar
  57. Sorokin PY, Sorokin YI, Boscolo R, Giovanardi O (2004) Bloom of picocyanobacteria in the Venice lagoon during summer-autumn 2001: ecological sequences. Hydrobiol 523(1–3):71–85CrossRefGoogle Scholar
  58. Suikkanen S, Engström-Öst J, Jokela J, Sivonen K, Viitasalo M (2006) Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. J Plankton Res 28(6):543–550CrossRefGoogle Scholar
  59. Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10(5):480–488CrossRefGoogle Scholar
  60. van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3):261–274CrossRefGoogle Scholar
  61. Wang R, Xiao H, Zhang P, Qu L, Cai H, Tang X (2007) Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J Appl Phycol 19(2):109–121CrossRefGoogle Scholar
  62. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982CrossRefGoogle Scholar
  63. Wium-Andersen S, Anthoni U, Christophersen C, Houen G (1982) Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39(2):187–190CrossRefGoogle Scholar
  64. Wium-Andersen S, Anthoni U, Houen G (1983) Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry 22(11):2613CrossRefGoogle Scholar
  65. Worden AZ, Wilken S (2016) A plankton bloom shifts as the ocean warms. Science 354(6310):287–288CrossRefGoogle Scholar
  66. Xu D, Gao Z, Zhang X, Fan X, Wang Y, Li D, Ye N (2012) Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides. PLoS One 7(4):e33648CrossRefGoogle Scholar
  67. Zaneveld JS (1940) The Charophyta of Malaysia and adjacent countries. Blumea-Biodivers Evol Biogeogr Plants 4(1):1–223Google Scholar
  68. Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98(2):196–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Marine Biology and Ecology, Institute of OceanographyUniversity of GdańskGdyniaPoland
  2. 2.Division of Marine Ecosystems Functioning, Institute of OceanographyUniversity of GdańskGdyniaPoland

Personalised recommendations