Advertisement

Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation

  • Katia González-Labrada
  • Romain Richard
  • Caroline Andriantsiferana
  • Héctor Valdés
  • Ulises J. Jáuregui-Haza
  • Marie-Hélène ManeroEmail author
Environmental and Sustainable Chemical Engineering

Abstract

Fluoroquinolones are extensively used in medicine due to their antimicrobial activity. Their presence in water inhibits microorganism activity in conventional wastewater treatment plants. This study aims to evaluate the technical feasibility of applying heterogeneous catalytic ozonation to eliminate ciprofloxacin (CIP) as a representative of fluoroquinolone antibiotics normally present in municipal wastewater discharges. Experiments were conducted in a semi-batch stirred slurry reactor, using 0.7 L of 100 mg L−1 CIP aqueous solution, at pH 3 and 30 °C. Experimental results show that single ozonation can easily oxidise CIP molecules (68%) within the first 5 min, leading to the generation of refractory oxidation by-products. However, when heterogeneous catalytic ozonation is applied using iron oxide supported on MFI synthetic zeolite, total degradation of CIP is observed at 5 min and a higher mineralisation rate is obtained. A novel sequential process is developed for CIP mineralisation. In a first step, a flash single ozonation is applied and CIP molecules are broken down. Then, a catalytic ozonation step is conducted by adding the Fe/MFI catalyst into the reactor. As a result of catalyst addition, 44% of Total Organic Carbon (TOC) is eliminated within the first 15 min, compared to single ozonation where only 13% of TOC removal is reached in the same time. The application of this sequential process to a real wastewater effluent spiked with CIP leads to 52% of TOC removal.

Keywords

Advanced oxidation process Antibiotic Catalyst Ciprofloxacin Ozonation Wastewater treatment 

Notes

Acknowledgements

This research was possible thanks to the financial support of Laboratoire de Génie Chimique, Université de Toulouse and the project TATARCOP of Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC)-Universidad de La Habana. K. González-Labrada expresses her gratitude to the Collaboration Services of the French Embassy in Cuba. H. Valdés gratefully acknowledges funding under CNRS Délégation Midi-Pyrénées contract 618035.

References

  1. Aboussaoud W, Manero MH, Pic JS, Debellefontaine H (2014) Combined ozonation using alumino silica materials for the removal of 2,4 dimethylphenol from water. Ozone Sci Eng 36:221–228CrossRefGoogle Scholar
  2. Adityosulindro S, Barthe L, González-Labrada K, Jáuregui-Haza UJ, Delmas H, Julcour C (2017) Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrason Sonochem 39:889–896CrossRefGoogle Scholar
  3. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRefGoogle Scholar
  4. Andreu V, Gimeno-García E, Pascual JA, Vazquez-Roig P, Picó Y (2016) Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: potential interactions and the influence of the environment. Sci Total Environ 540:278–286CrossRefGoogle Scholar
  5. Beltran FJ, Rivas FJ, Montero-de-Espinosa R (2005) Iron type catalysts for the ozonation of oxalic acid in water. Water Res 46:3553–3564CrossRefGoogle Scholar
  6. Chávez AM, Rey A, Beltrán FJ, Álvarez PM (2016) Solar photo-ozonation: a novel treatment method for the degradation of water pollutants. J Hazard Mater 317:36–43CrossRefGoogle Scholar
  7. Chen A, Ma X, Sun H (2008) Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. J Hazard Mater 156:568–575CrossRefGoogle Scholar
  8. De Witte B, Dewulf J, Demeestere K, De Ruyck M, Van Langenhove H (2007) Critical points in the analysis of ciprofloxacin by high-performance liquid chromatography. J Chromatogr A 1140:126–130Google Scholar
  9. Einaga H, Futamura S (2005) Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone. Appl Catal B Environ 60:49–55CrossRefGoogle Scholar
  10. Gomes JF, Costa R, Quinta-Ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283CrossRefGoogle Scholar
  11. Gomes JF, Quinta-Ferreira ME, Costa R, Quinta-Ferreira RM, Martins RC (2018) Paraben degradation using catalytic ozonation over volcanic rocks. Environ Sci Pol 25:7346–7357CrossRefGoogle Scholar
  12. Gonzalez Olmos R, Holzer F, Kopinke FD, Georgi A (2011) Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Appl Catal A 398:44–53CrossRefGoogle Scholar
  13. Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E (2010) Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environ Sci Technol 45:418–424CrossRefGoogle Scholar
  14. Hoigné J (1998) Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. Quality and treatment of drinking water II. Springer, Berlin, pp 83–141Google Scholar
  15. Hughes SR, Kay P, Brown LE (2012) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47:661–677CrossRefGoogle Scholar
  16. Ikhlaq A, Brown DR, Kasprzyk-Hordern B (2014) Catalytic ozonation for the removal of organic contaminants in water on alumina. Appl. Catal B Environ 155:110-122Google Scholar
  17. Jalali HM (2016) Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation. Mater Sci Eng C Mater Biol Appl 59:924–929CrossRefGoogle Scholar
  18. Kasprzyk-Hordern B, Ziólek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ 46:639–669CrossRefGoogle Scholar
  19. Knapp CW, Lima L, Olivares-Rieumont S, Bowen E, Werner D, Graham DW (2012) Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba. Front Microbiol 3:396Google Scholar
  20. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7CrossRefGoogle Scholar
  21. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710CrossRefGoogle Scholar
  22. Kwong C, Chao CY, Hui K, Wan M (2008) Removal of VOCs from indoor environment by ozonation over different porous materials. Atmos Environ 42:2300–2311CrossRefGoogle Scholar
  23. Larsson DJ (2014) Antibiotics in the environment. Ups J Med Sci 119:108–112CrossRefGoogle Scholar
  24. Lastre-Acosta AM, Cruz-González G, Nuevas-Paz L, Jáuregui-Haza UJ, Teixeira AC (2015) Ultrasonic degradation of sulfadiazine in aqueous solutions. Environ Sci Pol 22:918–925CrossRefGoogle Scholar
  25. Legube B, Leitner NKV (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72CrossRefGoogle Scholar
  26. Li X, Wang W, Dou J, Gao J, Chen S, Quan X, Zhao H (2016) Dynamic adsorption of ciprofloxacin on carbon nanofibers: quantitative measurement by in situ fluorescence. J Wat Proc Eng 9:14–20CrossRefGoogle Scholar
  27. Lin CE, Deng YJ, Liao WS, Sun SW, Lin WY, Chen CC (2004) Electrophoretic behavior and pKa determination of quinolones with a piperazinyl substituent by capillary zone electrophoresis. J Chromatogr A 1051:283–290CrossRefGoogle Scholar
  28. Liu C, Nanaboina V, Korshin GV, Jiang W (2012) Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Res 46:5235–5246CrossRefGoogle Scholar
  29. Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Sci 321:365–367CrossRefGoogle Scholar
  30. Martins RC, Ramos CM, Quinta-Ferreira RM (2014) Low-cost catalysts to enhance ozone action on the depuration of olive mill wastewaters. Ind Eng Chem Res 53:15357–15368CrossRefGoogle Scholar
  31. Merle T, Pic JS, Manero MH, Mathe S, Debellefontaine H (2010) Influence of activated carbons on the kinetics and mechanisms of aromatic molecules ozonation. Catal Today 151:166–172CrossRefGoogle Scholar
  32. Monteiro MA, Spisso BF, dos Santos JRMP, da Costa RP, Ferreira RG, Pereira MU, da Silva Miranda T, de Andrade BRG, d’Avila LA (2016) Occurrence of antimicrobials in river water samples from rural region of the State of Rio de Janeiro, Brazil. J Environ Prot 7:230–241CrossRefGoogle Scholar
  33. Ni C, Chen J (2001) Heterogeneous catalytic ozonation of 2-chlorophenol queous solution with alumina as a catalyst. Water Sci Technol 43:213–220CrossRefGoogle Scholar
  34. Nowara A, Burhenne J, Spiteller M (1997) Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J Agric Food Chem 45:1459–1463CrossRefGoogle Scholar
  35. Oller I, Malato S, Sánchez Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination a review. Sci Total Environ 409:4141–4166CrossRefGoogle Scholar
  36. Ötker HM, Akmehmet-Balcıoğlu I (2005) Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J Hazard Mater 122:251–258CrossRefGoogle Scholar
  37. Ou H, Ye J, Ma S, Wei C, Gao N, He J (2016) Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength ultraviolet light-emitting diodes: effectiveness, intermediates and antibacterial activity. Chem Eng J 289:391–401CrossRefGoogle Scholar
  38. Padhye LP, Yao H, Kung'u FT, Huang CH (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276CrossRefGoogle Scholar
  39. Pearce H (1975) Zeolite molecular sieves-structure, chemistry and use: by DA Breck, Wiley-Interscience, ElsevierGoogle Scholar
  40. Reungoat J, Pic JS, Manero MH, Debellefontaine H (2010) Oxidation of nitrobenzene by ozone in the presence of faujasite zeolite in a continuous flow gas-liquid-solid reactor. Water Sci Technol 62:1076–1083CrossRefGoogle Scholar
  41. Rivera Utrilla JM, Sánchez Polo MÁ, Ferro García G, Prados J, Ocampo Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287CrossRefGoogle Scholar
  42. Sadhwani JJ, El Kori AN, Melian Martel N, Del Rio Gamero B (2018) Removal of ciprofloxacin from seawater by reverse osmosis. J Environ Manag 217:337–345CrossRefGoogle Scholar
  43. Sayed M, Ismail M, Khan S, Tabassum S, Khan HM (2016) Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol 37:590–602CrossRefGoogle Scholar
  44. Stewart JJ (2012) Mopac 2012. Stewart Computational Chemistry, Colorado SpringsGoogle Scholar
  45. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, HobokeGoogle Scholar
  46. Sui MS, Xing L, Sheng SH, Guo H (2012) Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J Hazard Mater 227:227–236CrossRefGoogle Scholar
  47. Tay KS, Madehi N (2015) Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment. Sci Total Environ 520:23–31CrossRefGoogle Scholar
  48. Valdés H, Zaror CA (2006) Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach. Chemosphere 65: 1131-1136CrossRefGoogle Scholar
  49. Valdés H, Tardón RF, Zaror CA (2009) Methylene blue removal from contaminated waters using O3, natural zeolite, and O3/zeolite. Water Sci. Technol. 60: 1419-1424CrossRefGoogle Scholar
  50. Valdés H, Tardón RF, Zaror CA (2010) Effect of zeolite chemical surface properties on catalytic ozonation of methylene blue contaminated waters. Ozone Sci Eng 32:344–348CrossRefGoogle Scholar
  51. Valdés H, Tardón RF, Zaror CA (2012a) Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach. Environ Technol 33:1895–1903CrossRefGoogle Scholar
  52. Valdés H, Tardón RF, Zaror CA (2012b) Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters. Chem Eng J 211:388–395CrossRefGoogle Scholar
  53. Velichkova FA (2014) Vers un procédé Fenton hétérogène pour le traitement en continu d’eau polluée par des polluants pharmaceutiques, École Doctorale Mécanique, Énergétique, Génie civil et Procédés (Toulouse)Google Scholar
  54. Velichkova FA, Delmas H, Julcour C, Koumanova B (2017) Heterogeneous Fenton and photo-Fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. AICHE J 63:669–679CrossRefGoogle Scholar
  55. Vittenet J, Rodriguez J, Petit E, Cot D, Mendret J, Galarneau A, Brosillon S (2014) Removal of 2, 4-dimethylphenol pollutant in water by ozonation catalyzed by SOD, LTA, FAU-X zeolites particles obtained by pseudomorphic transformation (binderless). Microporous Mesoporous Mater 189:200–209CrossRefGoogle Scholar
  56. Vittenet J, Aboussaoud W, Mendret J, Pic JS, Debellefontaine H, Lesage N, Faucher K, Manero MH, Thibault-Starzyk F, Leclerc H, Galarneau A, Brosillon S (2015) Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water. Appl Catal A 504:519–532CrossRefGoogle Scholar
  57. Von Sonntag C, von Gunten U (2012) Chemistry of ozone in water and wastewater treatment. IWA Publishing, LondonGoogle Scholar
  58. Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R (2017) Accelerated ciprofloxacin biodegradation in the presence of magnetite nanoparticles. Chemosphere 188:168–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katia González-Labrada
    • 1
  • Romain Richard
    • 2
  • Caroline Andriantsiferana
    • 2
  • Héctor Valdés
    • 3
  • Ulises J. Jáuregui-Haza
    • 4
  • Marie-Hélène Manero
    • 2
    Email author
  1. 1.Universidad Tecnológica de la Habana “José Antonio Echeverría” CUJAELa HabanaCuba
  2. 2.Laboratoire de Génie ChimiqueUniversité de Toulouse CNRS, INPT, UPSToulouseFrance
  3. 3.Laboratorio de Tecnologías Limpias (F. Ingeniería) Universidad Católica de la Santísima ConcepciónConcepciónChile
  4. 4.Instituto Superior de Tecnologías y Ciencias AplicadasUniversidad de La HabanaLa HabanaCuba

Personalised recommendations