Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36394–36402 | Cite as

Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles

  • Shin Woong Kim
  • Jongmin Moon
  • Youn-Joo AnEmail author
Research Article


In this study, we investigated multi-generational effects and generation particle transfer in Caenorhabditis elegans following maternal food exposure to core-shell quantum dots. We found that that the Bag of Worms (BOW) phenotype in aged worms induces changes in quantum dot distribution in the parental body, which is related to the inter-generation transfer of these nanoparticles and to their effects in the offspring. To confirm these results we examined a variety of endpoints, namely, survival, reproduction, aging phenotype, oxidative stress, and intestinal fat metabolism. We show that worms born to parents at different times after exposure show different phenotypic effects as a consequence of quantum dot transfer. This evidence of trans-generational transfer and the effects of nanoparticles highlights the complex multi-generational effects and potential safety hazards that can occur under real environmental conditions.


Bag of Worms (BOW) Reproduction Reproductive senescence Quantum dots 



We thank Prof. Yhong Hee Shim (Konkuk University) and Prof. Junho Lee (Seoul National University) for providing the C. elegans strains.


This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (2016R1A2B3010445, 2016M3A6A7945504). This work also was supported by Korea Environment Industry & Technology Institute through “The Chemical Accident Prevention Technology Development Project”, funded by Korea Ministry of Environment (No. 2016001970001).

Supplementary material

11356_2018_3535_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1080 kb)


  1. American Society for Testing and Materials (2014) Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans, ASTM E2172–01Google Scholar
  2. Angelo G, Van Gilst MR (2009) Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326:954–958CrossRefGoogle Scholar
  3. Arndt DA, Chen J, Moua M, Klaper RD (2014) Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environ Toxicol Chem 33:541–547CrossRefGoogle Scholar
  4. Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R (2012) Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna. PLoS One 7:e48956CrossRefGoogle Scholar
  5. Byerly L, Cassada R, Russell R (1976) The life cycle of the nematode Caenorhabditis elegans: I. wild-type growth and reproduction. Dev Biol 51:23–33CrossRefGoogle Scholar
  6. Chen J, Caswell-Chen EP (2003) Why Caenorhabditis elegans adults sacrifice their bodies to progeny. Nematology 5:641–645CrossRefGoogle Scholar
  7. Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289CrossRefGoogle Scholar
  8. Contreras EQ, Cho M, Zhu H, Puppala HL, Escalera G, Zhong W, Colvin VL (2012) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154CrossRefGoogle Scholar
  9. Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL (2014) Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. Environ Toxicol Chem 33:2716–2723CrossRefGoogle Scholar
  10. Fischer J, Lefèvre C, Morava E, Mussini J-M, Laforêt P, Negre-Salvayre A, Lathrop M, Salvayre R (2007) The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet 39:28–30CrossRefGoogle Scholar
  11. Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC (2011) Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS One 6:e21668CrossRefGoogle Scholar
  12. Hsu PCL, O'Callaghan M, Al-Salim N, Hurst MR (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31:2366–2374CrossRefGoogle Scholar
  13. Hubbard EJA, Greenstein D (2005) Introduction to the germ line, Wormbook, 1–4,
  14. Hughes SE, Huang C, Kornfeld K (2011) Identification of mutations that delay somatic or reproductive aging of Caenorhabditis elegans. Genetics 189:341–356CrossRefGoogle Scholar
  15. Jacobasch C, Völker C, Giebner S, Völker J, Alsenz H, Potouridis T, Heidenreich H, Kayser G, Oehlmann J, Oetken M (2014) Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations. Environ Pollut 186:180–186CrossRefGoogle Scholar
  16. Khare P, Sonane M, Nagar Y, Moin N, Ali S, Gupta KC, Satish A (2015) Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans. Nanotoxicology 9:423–432CrossRefGoogle Scholar
  17. Khatchadourian A, Maysinger D (2009) Lipid droplets: their role in nanoparticle-induced oxidative stress. Mol Pharm 6:1125–1137CrossRefGoogle Scholar
  18. Kim SW, Nam S-H, An Y-J (2012) Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol Environ Safe 77:64–70CrossRefGoogle Scholar
  19. Kim SW, Kwak JI, An Y-J (2013) Multigenerational study of gold nanoparticles in Caenorhabditis elegans: Transgenerational effect of maternal exposure. Environ Sci Technol 47:5393–5399CrossRefGoogle Scholar
  20. Kumar AK, Pandey SS, Singh R, Shanker A, Dhawan A (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132CrossRefGoogle Scholar
  21. Kumar AK, Pandey SS, Singh R, Shanker A, Dhawan A (2011b) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry Part A 79:707–712Google Scholar
  22. Kuo Y, Hsu T-Y, Wu Y-C, Chang H-C (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34:8352–8360CrossRefGoogle Scholar
  23. Luo S, Murphy CT (2011) Caenorhabditis elegans reproductive aging: regulation and underlying mechanisms. Genesis 49:53–65CrossRefGoogle Scholar
  24. Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aqua Toxicol 100:140–150CrossRefGoogle Scholar
  25. Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699CrossRefGoogle Scholar
  26. Mosser T, Matic I, Leroy M (2011) Bacterium-induced internal egg hatching frequency is predictive of life span in Caenorhabditis elegans populations. Appl Environ Microbiol 77:8189–8192CrossRefGoogle Scholar
  27. Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, Zboril R, Kvitek L (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–4979CrossRefGoogle Scholar
  28. Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:e6622CrossRefGoogle Scholar
  29. Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y-F, Iida A, Tang Z, Zhao Y (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183CrossRefGoogle Scholar
  30. Scharf A, Piechulek A, von Mikecz A (2013) Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7:10695–10703CrossRefGoogle Scholar
  31. Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, Conley CA (2006) Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J Exp Biol 209:4129–4139CrossRefGoogle Scholar
  32. Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148:703–717Google Scholar
  33. Torrens C, Poston L, Hanson MA (2008) Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 100:760–766CrossRefGoogle Scholar
  34. Trent C, Tsung N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647Google Scholar
  35. Völker C, Boedicker C, Daubenthaler J, Oetken M, Oehlmann J (2013) Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS One 8:e75026CrossRefGoogle Scholar
  36. Wang MC, O'Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960CrossRefGoogle Scholar
  37. Wang Q, Ebbs SD, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759CrossRefGoogle Scholar
  38. Zhang SO, Box AC, Xu N, Men JL, Yu J, Guo F, Trimble R, Mak HY (2010) Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci 107:4640–4645CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Health ScienceKonkuk UniversitySeoulSouth Korea

Personalised recommendations