Environmental Science and Pollution Research

, Volume 25, Issue 35, pp 35501–35514 | Cite as

Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius

  • Ana-Belén Muñiz-González
  • José-Luis Martínez-GuitarteEmail author
Research Article


Ultraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by OD-PABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.


UV filters Binary mixture Endocrine system Stress Biotransformation Invertebrate Endocrine disruptors Chironomus riparius 


Funding information

This work was supported by Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (Spain), grant CTM2015-64913-R from the Ciencias y Tecnologías Medioambientales program. A.B.M.G is the receiver of a predoctoral contract from Universidad Nacional de Educación a Distancia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11356_2018_3516_MOESM1_ESM.pdf (552 kb)
ESM 1 (PDF 551 kb)


  1. Abolaji AO, Kamdem JP, Lugokenski TH, Farombi EO, Souza DO, da Silva Loreto ÉL, Rocha JBT (2015) Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol 5:328–339. CrossRefGoogle Scholar
  2. Aquilino M, Sánchez-Argüello P, Martínez-Guitarte J-L (2016) Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius. Aquat Toxicol 174:179–187. CrossRefGoogle Scholar
  3. Arnouk H, Zynda ER, Wang X-Y, Hylander BL, Manjili MH, Repasky EA, Subjeck JR, Latif Kazim A (2010) Tumour secreted grp170 chaperones full-length protein substrates and induces an adaptive anti-tumour immune response in vivo. Int J Hyperth 26:366–375. CrossRefGoogle Scholar
  4. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319. CrossRefGoogle Scholar
  5. Balmer ME, Buser H-R, Müller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes. Environ Sci Technol 39:953–962. CrossRefGoogle Scholar
  6. Beck Y, Pecasse F, Richards G (2004) Krüppel-homolog is essential for the coordination of regulatory gene hierarchies in early Drosophila development. Dev Biol 268:64–75. CrossRefGoogle Scholar
  7. Bergé JB, Feyereisen R, Amichot M (1998) Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos Trans R Soc Lond Ser B Biol Sci 353:1701–1705. CrossRefGoogle Scholar
  8. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. CrossRefGoogle Scholar
  9. Bulet P, Stöcklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11CrossRefGoogle Scholar
  10. Cizelj I, Glavan G, Božič J, Oven I, Mrak V, Narat M (2016) Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann). Pestic Biochem Physiol 128:68–75. CrossRefGoogle Scholar
  11. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. CrossRefGoogle Scholar
  12. Dai L, Ma M, Gao G, Chen H (2016) Dendroctonus armandi (Curculionidae: Scolytinae) cytochrome P450s display tissue specificity and responses to host terpenoids. Comp Biochem Physiol B Biochem Mol Biol 201:1–11. CrossRefGoogle Scholar
  13. De Felice B, Copia L, Guida M (2012) Gene expression profiling in zebrafish embryos exposed to diclofenac, an environmental toxicant. Mol Biol Rep 39:2119–2128. CrossRefGoogle Scholar
  14. de Groot AC, Roberts DW (2014) Contact and photocontact allergy to octocrylene: a review. Contact Dermatitis 70:193–204. CrossRefGoogle Scholar
  15. Eleftherianos I, Revenis C (2011) Role and importance of phenoloxidase in insect hemostasis. J Innate Immun 3:28–33. CrossRefGoogle Scholar
  16. El-Sheikh E-SA, Kamita SG, Hammock BD (2016) Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans. Pestic Biochem Physiol 128:30–36. CrossRefGoogle Scholar
  17. Flatt T, Min K-J, D’Alterio C et al (2008) Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A 105:6368–6373. CrossRefGoogle Scholar
  18. Gilbert LI (2004) Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215:1–10. CrossRefGoogle Scholar
  19. Guittard E, Blais C, Maria A, Parvy JP, Pasricha S, Lumb C, Lafont R, Daborn PJ, Dauphin-Villemant C (2011) CYP18A1, a key enzyme of Drosophila steroid hormone inactivation is essential for metamorphosis. Dev Biol 349:35–45. CrossRefGoogle Scholar
  20. Guo R, Pan L, Lin P, Zheng L (2017) The detoxification responses, damage effects and bioaccumulation in the scallop Chlamys farreri exposed to single and mixtures of benzo[a]pyrene and chrysene. Comp Biochem Physiol C Toxicol Pharmacol 191:36–51. CrossRefGoogle Scholar
  21. Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384. CrossRefGoogle Scholar
  22. Hatfield MJ, Umans RA, Hyatt JL, Edwards CC, Wierdl M, Tsurkan L, Taylor MR, Potter PM (2016) Carboxylesterases: general detoxifying enzymes. Chem Biol Interact 259:327–331. CrossRefGoogle Scholar
  23. Henderson CJ, McLaughlin LA, Scheer N et al (2015) Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo. Mol Pharmacol 87:733–739. CrossRefGoogle Scholar
  24. Heneweer M, Muusse M, van den Berg M, Sanderson JT (2005) Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells. Toxicol Appl Pharmacol 208:170–177. CrossRefGoogle Scholar
  25. Herrero Ó, Planelló R, Morcillo G (2015) The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere 128:266–277. CrossRefGoogle Scholar
  26. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein ORP150. Biochem Biophys Res Commun 230:94–99. CrossRefGoogle Scholar
  27. Jindra M, Palli SR, Riddiford LM (2012) The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 58:181–204. CrossRefGoogle Scholar
  28. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380. CrossRefGoogle Scholar
  29. Kimura I, Nakayama Y, Konishi M, Terasawa K, Ohta M, Itoh N, Fujimoto M (2012) Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins. Curr Protein Pept Sci 13:687–696. CrossRefGoogle Scholar
  30. Krętowski R, Stypułkowska A, Cechowska-Pasko M (2013) Low-glucose medium induces ORP150 expression and exerts inhibitory effect on apoptosis and senescence of human breast MCF7 cells. Acta Biochim Pol 60:167–173CrossRefGoogle Scholar
  31. Kunz PY, Fent K (2009) Estrogenic activity of ternary UV filter mixtures in fish (Pimephales promelas)—an analysis with nonlinear isobolograms. Toxicol Appl Pharmacol 234:77–88. CrossRefGoogle Scholar
  32. Kunz PY, Galicia HF, Fent K (2006) Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci 90:349–361. CrossRefGoogle Scholar
  33. Kurzik-Dumke U, Lohmann E (1995) Sequence of the new Drosophila melanogaster small heat-shock-related gene, lethal(2) essential for life [l(2)efl], at locus 59F4,5. Gene 154:171–175. CrossRefGoogle Scholar
  34. Lam SH, Winata CL, Tong Y, Korzh S, Lim WS, Korzh V, Spitsbergen J, Mathavan S, Miller LD, Liu ET, Gong Z (2006) Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics 27:351–361. CrossRefGoogle Scholar
  35. Landis G, Shen J, Tower J (2012) Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging 4:768–789. CrossRefGoogle Scholar
  36. Lauth X, Nesin A, Briand JP, Roussel JP, Hetru C (1998) Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochem Mol Biol 28:1059–1066. CrossRefGoogle Scholar
  37. Lilley TM, Ruokolainen L, Pikkarainen A, Laine VN, Kilpimaa J, Rantala MJ, Nikinmaa M (2012) Impact of tributyltin on immune response and life history traits of Chironomus riparius: single and multigeneration effects and recovery from pollution. Environ Sci Technol 46:7382–7389. CrossRefGoogle Scholar
  38. Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, Xue Y, Ren J (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31:3359–3361. CrossRefGoogle Scholar
  39. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E (2014) Insect prophenoloxidase: the view beyond immunity. Front Physiol 5.
  40. Marinković M, de Leeuw WC, de Jong M, Kraak MHS, Admiraal W, Breit TM, Jonker MJ (2012) Combining next-generation sequencing and microarray technology into a transcriptomics approach for the non-model organism Chironomus riparius. PLoS One 7:e48096. CrossRefGoogle Scholar
  41. Martínez-Guitarte J-L (2018) Transcriptional activity of detoxification genes is altered by ultraviolet filters in Chironomus riparius. Ecotoxicol Environ Saf 149:64–71. CrossRefGoogle Scholar
  42. Martín-Folgar R, Martínez-Guitarte J-L (2017) Cadmium alters the expression of small heat shock protein genes in the aquatic midge Chironomus riparius. Chemosphere 169:485–492. CrossRefGoogle Scholar
  43. Martín-Folgar R, de la Fuente M, Morcillo G, Martínez-Guitarte J-L (2015) Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): differential expression under conditions of normal growth and heat-induced stress. Comp Biochem Physiol A Mol Integr Physiol 188:76–86. CrossRefGoogle Scholar
  44. Minakuchi C, Zhou X, Riddiford LM (2008) Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev 125:91–105. CrossRefGoogle Scholar
  45. Minakuchi C, Namiki T, Shinoda T (2009) Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 325:341–350. CrossRefGoogle Scholar
  46. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614. CrossRefGoogle Scholar
  47. Montesi M, Jähn K, Bonewald L, Stea S, Bordini B, Beraudi A (2016) Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Mol Med Rep 14:4248–4254. CrossRefGoogle Scholar
  48. Morales M, Martínez-Paz P, Martín R, Planelló R, Urien J, Martínez-Guitarte JL, Morcillo G (2014) Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat Toxicol 157:1–9. CrossRefGoogle Scholar
  49. Morrow G, Hightower LE, Tanguay RM (2015) Small heat shock proteins: big folding machines. Cell Stress Chaperones 20:207–212. CrossRefGoogle Scholar
  50. Muema JM, Nyanjom SG, Mutunga JM, Njeru SN, Bargul JL (2017) Green tea proanthocyanidins cause impairment of hormone-regulated larval development and reproductive fitness via repression of juvenile hormone acid methyltransferase, insulin-like peptide and cytochrome P450 genes in Anopheles gambiae sensu stricto. PLoS One 12:e0173564. CrossRefGoogle Scholar
  51. Naaby-Hansen S, Herr JC (2010) Heat shock proteins on the human sperm surface. J Reprod Immunol 84:32–40. CrossRefGoogle Scholar
  52. Nair PMG, Park SY, Choi J (2011) Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp Biochem Physiol C Toxicol Pharmacol 154:399–408. CrossRefGoogle Scholar
  53. Nebert DW, Vasiliou V (2004) Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics 1:460–464. CrossRefGoogle Scholar
  54. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R??, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42. CrossRefGoogle Scholar
  55. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651. CrossRefGoogle Scholar
  56. Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T (2008) Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem Mol Biol 38:714–720. CrossRefGoogle Scholar
  57. OECD (2001) OECD guidelines for testing of chemicals: sediment-water chironomid toxicity test using spiked sediment. OECD Publishing, Paris, FranceGoogle Scholar
  58. Ozáez I, Martínez-Guitarte JL, Morcillo G (2013) Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius. Sci Total Environ 456–457:120–126. CrossRefGoogle Scholar
  59. Ozáez I, Aquilino M, Morcillo G, Martínez-Guitarte J-L (2016a) UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae. Environ Pollut 214:239–247. CrossRefGoogle Scholar
  60. Ozáez I, Morcillo G, Martínez-Guitarte J-L (2016b) Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius. Sci Total Environ 557–558:240–247. CrossRefGoogle Scholar
  61. Ozáez I, Morcillo G, Martínez-Guitarte J-L (2016c) The effects of binary UV filter mixtures on the midge Chironomus riparius. Sci Total Environ 556:154–162. CrossRefGoogle Scholar
  62. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M (1999) 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 274:6397–6404. CrossRefGoogle Scholar
  63. Park K, Park J, Kim J, Kwak I-S (2010) Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp Biochem Physiol C Toxicol Pharmacol 151:439–446. CrossRefGoogle Scholar
  64. Ryu CS, Klein K, Zanger UM (2017) Membrane associated progesterone receptors: promiscuous proteins with pleiotropic functions—focus on interactions with cytochromes P450. Front Pharmacol 8:159. CrossRefGoogle Scholar
  65. Sánchez Rodríguez A, Rodrigo Sanz M, Betancort Rodríguez JR (2015) Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment. Chemosphere 131:85–90. CrossRefGoogle Scholar
  66. Sang Z, Leung KS-Y (2016) Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Sci Total Environ 566–567:489–498. CrossRefGoogle Scholar
  67. Saraiva AS, Sarmento RA, Rodrigues ACM, Campos D, Fedorova G, Žlábek V, Gravato C, Pestana JLT, Soares AMVM (2017) Assessment of thiamethoxam toxicity to Chironomus riparius. Ecotoxicol Environ Saf 137:240–246. CrossRefGoogle Scholar
  68. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109:239–244. CrossRefGoogle Scholar
  69. Schlumpf M, Durrer S, Faass O, Ehnes C, Fuetsch M, Gaille C, Henseler M, Hofkamp L, Maerkel K, Reolon S, Timms B, Tresguerres JAF, Lichtensteiger W (2008) Developmental toxicity of UV filters and environmental exposure: a review. Int J Androl 31:144–151. CrossRefGoogle Scholar
  70. Schreurs RHMM, Sonneveld E, Jansen JHJ, Seinen W, van der Burg B (2005) Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays. Toxicol Sci 83:264–272. CrossRefGoogle Scholar
  71. Soin T, Smagghe G (2007) Endocrine disruption in aquatic insects: a review. Ecotoxicology 16:83–93. CrossRefGoogle Scholar
  72. Stojadinovic A, Hooke JA, Shriver CD, Nissan A, Kovatich AJ, Kao TC, Ponniah S, Peoples GE, Moroni M (2007) HYOU1/Orp150 expression in breast cancer. Med Sci Monit 13:BR231–BR239Google Scholar
  73. Sumpter JP, Johnson AC (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332. CrossRefGoogle Scholar
  74. Sun H, Yang B, Zhang Y, Liu Z (2017) Metabolic resistance in Nilaparvata lugens to etofenprox, a non-ester pyrethroid insecticide. Pestic Biochem Physiol 136:23–28. CrossRefGoogle Scholar
  75. Swedenborg E, Rüegg J, Mäkelä S, Pongratz I (2009) Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol 43:1–10. CrossRefGoogle Scholar
  76. Wang J, Pan L, Wu S, Lu L, Xu Y, Zhu Y, Guo M, Zhuang S (2016) Recent advances on endocrine disrupting effects of UV filters. Int J Environ Res Public Health 13:782. CrossRefGoogle Scholar
  77. Wang L, Peng Y, Nie X, Pan B, Ku P, Bao S (2016b) Gene response of CYP360A, CYP314, and GST and whole-organism changes in Daphnia magna exposed to ibuprofen. Comp Biochem Physiol C Toxicol Pharmacol 179:49–56. CrossRefGoogle Scholar
  78. Wójtowicz I, Jabłońska J, Zmojdzian M et al (2015) Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 142:994–1005. CrossRefGoogle Scholar
  79. Yamanaka N, Rewitz KF, O’Connor MB (2013) Ecdysone control of developmental transitions: lessons from Drosophila research. Annu Rev Entomol 58:497–516. CrossRefGoogle Scholar
  80. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. CrossRefGoogle Scholar
  81. Zhang L, Lu Y, Xiang M, Shang Q, Gao X (2016) The retardant effect of 2-Tridecanone, mediated by cytochrome P450, on the development of cotton bollworm Helicoverpa armigera. BMC Genomics 17:954. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de FluidosUniversidad Nacional de Educación a Distancia, UNEDMadridSpain
  2. 2.Facultad de CienciasUNEDMadridSpain

Personalised recommendations