Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36645–36660 | Cite as

Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments: a case study in the Malfidano mining area (SW Sardinia, Italy)

  • Daniela Medas
  • Ilaria Carlomagno
  • Carlo Meneghini
  • Giuliana Aquilanti
  • Tohru Araki
  • Diana E. Bedolla
  • Carla Buosi
  • Maria Antonietta Casu
  • Alessandra Gianoncelli
  • Andrei C. Kuncser
  • V. Adrian Maraloiu
  • Giovanni De Giudici
Research Article
  • 58 Downloads

Abstract

Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0–80 mg/kg of Zn, 5.4–60 mg/kg of Fe and 0.5–4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.

Keywords

Bivalve Biomineralization Detoxification Synchrotron x-ray techniques Trace metals Zinc 

Notes

Acknowledgments

The authors acknowledge the CERIC-ERIC Consortium (grant numbers: 20152041, 20162061, 20167045) for the access to experimental facilities and financial support and the Romanian Ministry of Education (through the Core Program, Project PN16-480102). XAFS (Elettra) 20160254 beamtime, Diamond SP 16496 beamtime, and grant are acknowledged. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. GDG and DM acknowledge RAS (grant number: E58C16000080003) and RAS/FBS (grant number: F72F16003080002). The Grant of Excellence Departments, MIUR (ARTICOLO 1, COMMI 314–337 LEGGE 232/2016), is gratefully acknowledged. We also thank three anonymous Journal Reviewers for their excellent constructive comments.

Supplementary material

11356_2018_3504_MOESM1_ESM.pdf (171 kb)
ESM 1 (PDF 171 kb)

References

  1. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293.  https://doi.org/10.1111/nph.13588 CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109.  https://doi.org/10.1021/ja027296o CrossRefGoogle Scholar
  3. Amoozadeh E, Malek M, Rashidinejad R, Nabavi S, Karbassi M, Ghayoumi R, Ghorbanzadeh-Zafarani G, Salehi H, Sures B (2014) Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res 21:2386–2395.  https://doi.org/10.1007/s11356-013-1890-8 CrossRefGoogle Scholar
  4. Andral B, Galgani F, Tomasino C, Bouchoucha M, Blottiere C, Scarpato A, Benedicto J, Deudero S, Calvo M, Cento A, Benbrahim S, Boulahdid M, Sammari C (2011) Chemical contamination baseline in the Western Basin of the Mediterranean Sea based on transplanted mussels. Arch Environ Contam Toxicol 61:261–271.  https://doi.org/10.1007/s00244-010-9599-x CrossRefGoogle Scholar
  5. Apitz SE, Degetto S, Cantaluppi C (2009) The use of statistical methods to separate natural background and anthropogenic concentrations of trace elements in radio-chronologically selected surface sediments of the Venice lagoon. Mar Pollut Bull 58:402–414.  https://doi.org/10.1016/j.marpolbul.2008.10.007 CrossRefGoogle Scholar
  6. Arfaeinia H, Nabipour I, Ostovar A, Asadgol Z, Abuee E, Keshtkar M, Dobaradaran S (2016) Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity. Environ Sci Pollut Res 23:9871–9890.  https://doi.org/10.1007/s11356-016-6189-0 CrossRefGoogle Scholar
  7. Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77.  https://doi.org/10.1093/molbev/msw219 CrossRefGoogle Scholar
  8. Atzori G, Aru V, Marincola FC et al (2018) Sediments distribution of trace metals in a coastal lagoon (southern Sardinia, Mediterranean Sea): assessment of contamination and ecological risk. Chem Ecol 34:727–746.  https://doi.org/10.6084/m9.figshare.6714137.v1 CrossRefGoogle Scholar
  9. Bechstädt T, Boni M (1994) Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro-Ordovician of southwestern Sardinia: Servizio Geologico d’Italia Memorie Descritive carta Geologica d’Italia, v. XLVIII, 434 pGoogle Scholar
  10. Benfatto M, Meneghini C (2014) A close look into the low energy region of the XAS spectra: the XANES region. In: Synchrotron radiation, basic, methods and applications. Mobilio, S., Boscherini, F., Meneghini, C., Springer-Verlag, Berlin, pp 213–240Google Scholar
  11. Bilgin M, Uluturhan-Suzer E (2017) Assessment of trace metal concentrations and human health risk in clam (Tapes decussatus) and mussel (Mytilus galloprovincialis) from the Homa lagoon (eastern Aegean Sea). Environ Sci Pollut Res 24:4174–4184.  https://doi.org/10.1007/s11356-016-8163-2 CrossRefGoogle Scholar
  12. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470.  https://doi.org/10.1023/A:1005995217901 CrossRefGoogle Scholar
  13. Boni M, Gilg HA, Aversa G, Balassone G (2003) The “calamine” of Southwest Sardinia: geology, mineralogy, and stable isotope geochemistry of supergene Zn mineralization. Econ Geol 98:731–748.  https://doi.org/10.2113/gsecongeo.98.4.731 CrossRefGoogle Scholar
  14. Brown BE (1982) The form and function of metal-containing granules in invertebrate tissues. Biol Rev 57:621–625.  https://doi.org/10.1111/j.1469-185X.1982.tb00375.x CrossRefGoogle Scholar
  15. Brown ME, Kowalewski M, Neves RJ, Cherry DS, Schreiber ME (2005) Freshwater mussel shells as environmental chronicles: geochemical and taphonomic signatures of mercury-related extirpations in the north fork Holston River, Virginia. Environ Sci Technol 39:1455–1462.  https://doi.org/10.1021/es048573p CrossRefGoogle Scholar
  16. Caldelas C, Weiss DJ (2017) Zinc homeostasis and isotopic fractionation in plants: a review. Plant Soil 411:17–46.  https://doi.org/10.1007/s11104-016-3146-0 CrossRefGoogle Scholar
  17. Cariou E, Guivel C, La C et al (2017) Lead accumulation in oyster shells, a potential tool for environmental monitoring. Mar Pollut Bull 125:19–29.  https://doi.org/10.1016/j.marpolbul.2017.07.075 CrossRefGoogle Scholar
  18. Carney CK, Harry SR, Sewell SL (2007) Detoxification biominerals. In: Biomineralization I. Topics in current chemistry. Naka K., Springer, Berlin, Heidelberg, pp 155–185Google Scholar
  19. Carroll M, Romanek CS (2008) Shell layer variation in trace element concentration for the freshwater bivalve Elliptio complanata. Geo-Mar Lett 28:369–381.  https://doi.org/10.1007/s00367-008-0117-3 CrossRefGoogle Scholar
  20. Castillo-Michel HA, Larue C, Pradas del Real AE et al (2017) Practical review on the use of synchrotron based micro- and nano-x-ray fluorescence mapping and x-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32.  https://doi.org/10.1016/j.plaphy.2016.07.018 CrossRefGoogle Scholar
  21. Checa A (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32:405–416.  https://doi.org/10.1054/tice.2000.0129 CrossRefGoogle Scholar
  22. Cherchi A, Buosi C, Zuddas P, De Giudici G (2012) Bioerosion by microbial euendoliths in benthic foraminifera from heavy metal-polluted coastal environments of Portovesme (South-Western Sardinia, Italy). Biogeosciences 9:4607–4620.  https://doi.org/10.5194/bg-9-4607-2012 CrossRefGoogle Scholar
  23. Cidu R, Biddau R, Fanfani L (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 100:125–132.  https://doi.org/10.1016/j.gexplo.2008.02.003 CrossRefGoogle Scholar
  24. Cidu R, Medas D, Di Palma M (2007) The Fluminese mining district (SW Sardinia, Italy): impact of the past lead-zinc exploitation on aquatic environment. R. Cidu & F. Frau, Mako Edizioni, Cagliari, pp 47–51Google Scholar
  25. Conners DE, Westerfield SM, Feyko A, Black MC (1999) Lead accumulation in soft tissues and shells of Asiatic clams (Corbicula fluminea). In: Proceedings of the Georgia water resources conference. Hatcher, K. J., Athens, GA: University of Georgia., pp 597–600Google Scholar
  26. Coombs J, George SG (1978) Mechanisms of immobilization and detoxification of metals in marine organisms. In: Physiology and behavior of marine organism. D.S. McLusky and A.J. Berry, Pergamon Press, Oxford, pp 179–185Google Scholar
  27. Cunningham DP, Lundie LLJ (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14Google Scholar
  28. De Giudici G, Lattanzi P, Medas D (2014a) Synchrotron radiation and environmental sciences. In: Synchrotron radiation. Mobilio, S., Boscherini, F., Meneghini, C., Springer-Verlag Berlin Heidelberg, pp 661–676Google Scholar
  29. De Giudici G, Medas D, Cidu R et al (2018a) Application of hydrologic-tracer techniques to the Casargiu adit and Rio Irvi (SW-Sardinia, Italy): using enhanced natural attenuation to reduce extreme metal loads. Appl Geochem 96:42–54.  https://doi.org/10.1016/j.apgeochem.2018.06.004 CrossRefGoogle Scholar
  30. De Giudici G, Medas D, Meneghini C et al (2015) Microscopic biomineralization processes and Zn bioavailability: a synchrotron-based investigation of Pistacia lentiscus L. roots. Environ Sci Pollut Res Int 22:19352–19361.  https://doi.org/10.1007/s11356-015-4808-9 CrossRefGoogle Scholar
  31. De Giudici G, Meneghini C, Medas D et al (2018b) Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem Geol 477:100–111.  https://doi.org/10.1016/j.chemgeo.2017.12.009 CrossRefGoogle Scholar
  32. De Giudici G, Pusceddu C, Medas D et al (2017) The role of natural biogeochemical barriers in limiting metal loading to a stream affected by mine drainage. Appl Geochem 76:124–135.  https://doi.org/10.1016/j.apgeochem.2016.11.020 CrossRefGoogle Scholar
  33. De Giudici G, Wanty RB, Podda F et al (2014b) Quantifying biomineralization of zinc in the rio Naracauli (Sardinia, Italy), using a tracer injection and synoptic sampling. Chem Geol 384:110–119.  https://doi.org/10.1016/j.chemgeo.2014.07.002 CrossRefGoogle Scholar
  34. Deb SC, Fukushima T (1999) Metals in aquatic ecosystems: mechanisms of uptake, accumulation and release-ecotoxicological perspectives. Int J Environ Sci Technol 56:385–417.  https://doi.org/10.1080/00207239908711212 CrossRefGoogle Scholar
  35. Di Cicco AD, Aquilanti G, Minicucci M et al (2009) Novel XAFS capabilities at ELETTRA synchrotron light source. J Phys Conf Ser 190:012043CrossRefGoogle Scholar
  36. Dobaradaran S, Nabipour I, Saeedi R, Ostovar A, Khorsand M, Khajeahmadi N, Hayati R, Keshtkar M (2017) Association of metals (Cd, Fe, As, Ni, Cu, Zn and Mn) with cigarette butts in northern part of the Persian Gulf. Tob Control 26:461–463.  https://doi.org/10.1136/tobaccocontrol-2016-052931 CrossRefGoogle Scholar
  37. Dobaradaran S, Schmidt TC, Nabipour I, Ostovar A, Raeisi A, Saeedi R, Khorsand M, Khajeahmadi N, Keshtkar M (2018a) Cigarette butts abundance and association of mercury and lead along the Persian Gulf beach: an initial investigation. Environ Sci Pollut Res 25:5465–5473.  https://doi.org/10.1007/s11356-017-0676-9 CrossRefGoogle Scholar
  38. Dobaradaran S, Soleimani F, Nabipour I, Saeedi R, Mohammadi MJ (2018b) Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Mar Pollut Bull 126:74–76.  https://doi.org/10.1016/j.marpolbul.2017.10.094 CrossRefGoogle Scholar
  39. Faggio C, Tsarpali V, Dailianis S (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Sci Total Environ 636:220–229.  https://doi.org/10.1016/j.scitotenv.2018.04.264 CrossRefGoogle Scholar
  40. Foster LC, Allison N, Finch AA, Andersson C (2009) Strontium distribution in the shell of the aragonite bivalve Arctica islandica. Geochem Geophys 10:Q03003.  https://doi.org/10.1029/2007GC001915 CrossRefGoogle Scholar
  41. Foster LC, Finch AA, Allison N, Andersson C, Clarke LJ (2008) Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica. Chem Geol 254:113–119.  https://doi.org/10.1016/j.chemgeo.2008.06.007 CrossRefGoogle Scholar
  42. Frau F, Medas D, Da Pelo S et al (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut 226:55.  https://doi.org/10.1007/s11270-015-2339-0 CrossRefGoogle Scholar
  43. George SG, Pirie BJS, Cheyne AR, Coombs TL, Grant PT (1978) Detoxication of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster Ostrea edulis. Mar Biol 45:147–156.  https://doi.org/10.1007/BF00390550 CrossRefGoogle Scholar
  44. Géret F, Jouan A, Turpin V et al (2002) Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat Living Resour 15:61–66.  https://doi.org/10.1016/S0990-7440(01)01147-0 CrossRefGoogle Scholar
  45. Gianoncelli A, Kaulich B, Alberti R, Klatka T, Longoni A, de Marco A, Marcello A, Kiskinova M (2009) Simultaneous soft x-ray transmission and emission microscopy. Nucl Instrum Methods Phys Res A 608:195–198.  https://doi.org/10.1016/j.nima.2009.06.035 CrossRefGoogle Scholar
  46. Gianoncelli A, Kourousias G, Altissimo M et al (2016b) Combining multiple imaging techniques at the TwinMic X-ray microscopy beamline. AIP Conference Proceedings 1764:030002.  https://doi.org/10.1063/1.4961136 CrossRefGoogle Scholar
  47. Gianoncelli A, Kourousias G, Merolle L, Altissimo M, Bianco A (2016a) Current status of the TwinMic beamline at Elettra: a soft x-ray transmission and emission microscopy station. J Synchrotron Radiat 23:1526–1537.  https://doi.org/10.1107/S1600577516014405 CrossRefGoogle Scholar
  48. Gianoncelli A, Kourousias G, Stolfa A, Kaulich B (2013) Recent developments at the TwinMic beamline at ELETTRA: an 8 SDD detector setup for low energy x-ray fluorescence. J Phys Conf Ser 425:182001CrossRefGoogle Scholar
  49. Gianoncelli A, Morrison GR, Kaulich B, Bacescu D, Kovac J (2006) A fast readout CCD camera system for scanning x-ray microscopy. Appl Phys Lett 89:251117–251119.  https://doi.org/10.1063/1.2422908 CrossRefGoogle Scholar
  50. Gillikin D, Lorrain A, Navez J et al (2005) Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochem Geophys 6.  https://doi.org/10.1029/2004GC000874
  51. Guo X, Feng C (2018) Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Sci Total Environ 631–632:56–70.  https://doi.org/10.1016/j.scitotenv.2018.03.019 CrossRefGoogle Scholar
  52. Hahn S, Rodolfo-Metalpa R, Griesshaber E, Schmahl WW, Buhl D, Hall-Spencer JM, Baggini C, Fehr KT, Immenhauser A (2012) Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences 9:1897–1914.  https://doi.org/10.5194/bg-9-1897-2012 CrossRefGoogle Scholar
  53. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive x-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147.  https://doi.org/10.1007/BF00381789 CrossRefGoogle Scholar
  54. Huanxin W, Lejun Z, Presley BJ (2000) Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environ Geol 39:1216–1226.  https://doi.org/10.1007/s002540000110 CrossRefGoogle Scholar
  55. Jou L-J, Chen B-C, Chen W-Y, Liao C-M (2016) Sensory determinants of valve rhythm dynamics provide in situ biodetection of copper in aquatic environments. Environ Sci Pollut Res Int 23:5374–5389.  https://doi.org/10.1007/s11356-015-5735-5 CrossRefGoogle Scholar
  56. Karbasdehi VN, Dobaradaran S, Nabipour I, Ostovar A, Vazirizadeh A, Ravanipour M, Nazmara S, Keshtkar M, Mirahmadi R, Noorinezhad M (2016a) A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: the Persian Gulf as a case. J Environ Health Sci Eng 14:16.  https://doi.org/10.1186/s40201-016-0260-0 CrossRefGoogle Scholar
  57. Karbasdehi VN, Dobaradaran S, Nabipour I, Arfaeinia H, Mirahmadi R, Keshtkar M (2016b) Data on metal contents (As, Ag, Sr, Sn, Sb, and Mo) in sediments and shells of Trachycardium lacunosum in the northern part of the Persian Gulf. Data in Brief 8:966–971.  https://doi.org/10.1016/j.dib.2016.06.065 CrossRefGoogle Scholar
  58. Kastner M (1999) Oceanic minerals: their origin, nature of their environment, and significance. Proc Natl Acad Sci U S A 96:3380–3387.  https://doi.org/10.1073/pnas.96.7.3380 CrossRefGoogle Scholar
  59. Kaulich B, Bacescu D, Susini J, et al (2006) Proceeding 8th international conference x-ray microscopy IPAP Conf. Series. S. Aoki, Y. Kagoshima, Y. Suzuki, p 22Google Scholar
  60. Kennedy WJ, Taylor JD, Hall A (2008) Environmental and biological controls on bivalve shell mineralogy. Biol Rev 44:499–530.  https://doi.org/10.1111/j.1469-185X.1969.tb00610.x CrossRefGoogle Scholar
  61. Klein RT, Lohmann KC, Thayer CW (1996) SrCa and 13C12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotopic composition of seawater. Geochim Cosmochim Acta 60:4207–4221.  https://doi.org/10.1016/S0016-7037(96)00232-3 CrossRefGoogle Scholar
  62. Koide M, Lee DS, Goldberg ED (1982) Metal and transuranic records in mussel shells, byssal threads and tissues. Estuar Coast Shelf Sci 15:679–695CrossRefGoogle Scholar
  63. Kong Y, Jing G, Yan Z, Li C, Gong N, Zhu F, Li D, Zhang Y, Zheng G, Wang H, Xie L, Zhang R (2009) Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J Biol Chem 284:10841–10854.  https://doi.org/10.1074/jbc.M808357200 CrossRefGoogle Scholar
  64. Kucuksezgin F, Pazi I, Yucel-Gier G, Akcali B, Galgani F (2013) Monitoring of heavy metal and organic compound levels along the eastern Aegean coast with transplanted mussels. Chemosphere 93:1511–1518.  https://doi.org/10.1016/j.chemosphere.2013.07.058 CrossRefGoogle Scholar
  65. Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez JL (2007) Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68:2033–2039.  https://doi.org/10.1016/j.chemosphere.2007.02.039 CrossRefGoogle Scholar
  66. Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C (2014) MANTiS: a program for the analysis of x-ray spectromicroscopy data. J Synchrotron Radiat 21:1206–1212.  https://doi.org/10.1107/S1600577514013964 CrossRefGoogle Scholar
  67. Lopes-Lima M, Freitas S, Pereira L, Gouveia E, Hinzmann M, Checa A, Machado J (2012) Ionic regulation and shell mineralization in the bivalve Anodonta cygnea (swan mussel) following heavy-metal exposure. Can J Zool 90:267–283.  https://doi.org/10.1139/z11-129 CrossRefGoogle Scholar
  68. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  69. Luo L, Zhang S (2010) Applications of synchrotron-based x-ray techniques in environmental science. Sci China Chem 53:2529–2538.  https://doi.org/10.1007/s11426-010-4085-x CrossRefGoogle Scholar
  70. Lutz RA (2004) Bivalve molluscs: biology, ecology and culture by Elizabeth Gosling the quarterly review of biology 79:317–317. doi:  https://doi.org/10.1086/425799
  71. Marcello A, Pretti S, Valera P, et al (2004) Metallogeny in Sardinia (Italy): from the Cambrian to the tertiary. In: 32nd international geological congress, APAT 4, 14–36, Firenze., mem. Descr. Carta Geol. d’It. Guerrieri L., Rischia I., Serva LGoogle Scholar
  72. Marin F, Roy NL, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci 4:1099–1125CrossRefGoogle Scholar
  73. Medas D, Cidu R, De Giudici G, Podda F (2013) Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy). J Geochem Explor 133:149–159CrossRefGoogle Scholar
  74. Medas D, De Giudici G, Casu MA et al (2015) Microscopic processes ruling the bioavailability of Zn to roots of euphorbia pithyusa L. pioneer plant. Environ Sci Technol 49:1400–1408.  https://doi.org/10.1021/es503842w CrossRefGoogle Scholar
  75. Medas D, De Giudici G, Podda F et al (2014a) Apparent energy of hydrated biomineral surface and apparent solubility constant: an investigation of hydrozincite. Geochim Cosmochim Acta 140:349–364.  https://doi.org/10.1016/j.gca.2014.05.019 CrossRefGoogle Scholar
  76. Medas D, De Giudici G, Pusceddu C et al (2017b) Impact of Zn excess on biomineralization processes in Juncus acutus grown in mine polluted sites. J Hazard Mater.  https://doi.org/10.1016/j.jhazmat.2017.08.031
  77. Medas D, Lattanzi P, Podda F, Meneghini C, Trapananti A, Sprocati A, Casu MA, Musu E, De Giudici G (2014b) The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy. Environ Sci Pollut Res 21(11):6775–6782CrossRefGoogle Scholar
  78. Medas D, Meneghini C, Podda F, Floris C, Casu M, Casu MA, Musu E, de Giudici G (2018) Structure of low-order hemimorphite produced in a Zn-rich environment by cyanobacterium Leptolingbya frigida. Am Mineral 103:711–719.  https://doi.org/10.2138/am-2018-6128 CrossRefGoogle Scholar
  79. Medas D, Podda F, Meneghini C, De Giudici G (2017a) Stability of biological and inorganic hemimorphite: implications for hemimorphite precipitation in non-sulfide Zn deposits. Ore Geol Rev 89:808–821.  https://doi.org/10.1016/j.oregeorev.2017.07.015 CrossRefGoogle Scholar
  80. Meneghini C, Bardelli F, Mobilio S (2012) ESTRA-FitEXA: a software package for EXAFS data analysis. Nucl Instrum Methods Phys Res B 285:153–157.  https://doi.org/10.1016/j.nimb.2012.05.027 CrossRefGoogle Scholar
  81. Meneghini C, Di Matteo S, Monesi C et al (2005) Structural dichroism in the antiferromagnetic insulating phase of V2O3. Phys Rev B 72:033111.  https://doi.org/10.1103/PhysRevB.72.033111 CrossRefGoogle Scholar
  82. Morelli G, Rimondi V, Benvenuti M, Medas D, Costagliola P, Gasparon M (2017) Experimental simulation of arsenic desorption from quaternary aquifer sediments following sea water intrusion. Appl Geochem 87:176–187.  https://doi.org/10.1016/j.apgeochem.2017.10.024 CrossRefGoogle Scholar
  83. Morrison GR, Gianoncelli A, Kaulich B, et al (2006) A fast readout CCD system for configured-detector imaging in STXM. In: Conf. Proc. Ser. IPAP. pp 277–379Google Scholar
  84. Moschino V, Schintu M, Marrucci A, Marras B, Nesto N, da Ros L (2017) An ecotoxicological approach to evaluate the effects of tourism impacts in the marine protected area of La Maddalena (Sardinia, Italy). Mar Pollut Bull 122:306–315.  https://doi.org/10.1016/j.marpolbul.2017.06.062 CrossRefGoogle Scholar
  85. Moura G, Guedes R, Machado J (1999) The extracellular mineral concretions in Anodonta cygnea (L.): different types and manganese exposure-caused changes. J Shellfish Res 18:645–650Google Scholar
  86. Numpy https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.corrcoef.html - Copyright 2008-2009, The Scipy community. Last updated on May 11, 2014Google Scholar
  87. Pietrzak J, Bates J, Scott R (1976) Constituents of unionoid extrapalial fluid. II pH and metal ion composition. Hydrobiologia 50:89–93CrossRefGoogle Scholar
  88. Podda F, Medas D, De Giudici G, Ryszka P, Wolowski K, Turnau K (2014) Zn biomineralization processes and microbial biofilm in a metal-rich stream (Naracauli, Sardinia). Environ Sci Pollut Res 21(11):6793–6808CrossRefGoogle Scholar
  89. RAS (2008) Regione Autonoma della Sardegna - Piano Regionale di gestione dei rifiuti - Piano di bonifica siti inquinatiGoogle Scholar
  90. Romano E, De Giudici G, Bergamin L et al (2017) The marine sedimentary record of natural and anthropogenic contribution from the Sulcis-Iglesiente mining district (Sardinia, Italy). Mar Pollut Bull 122:331–343.  https://doi.org/10.1016/j.marpolbul.2017.06.070 CrossRefGoogle Scholar
  91. Rosenberg GD, Hughes WW (1991) A metabolic model for the determination of shell composition in the bivalve mollusc, Mytilus edulis. Lethaia 24:83–96.  https://doi.org/10.1111/j.1502-3931.1991.tb01182.x CrossRefGoogle Scholar
  92. Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B (2014) Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ Monit Assess 186:3199–3212.  https://doi.org/10.1007/s10661-013-3610-8 CrossRefGoogle Scholar
  93. Salvi G, Buosi C, Arbulla D et al (2015) Ostracoda and foraminifera response to a contaminated environment: the case of the ex-military arsenal of the la Maddalena harbour (Sardinia, Italy). Micropaleontol 61:115–133Google Scholar
  94. Sarmiento AM, Bonnail E, Nieto JM, DelValls A (2016) Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment. Environ Sci Pollut Res Int 23:22957–22967.  https://doi.org/10.1007/s11356-016-7464-9 CrossRefGoogle Scholar
  95. Schintu M, Durante L, Maccioni A, Meloni P, Degetto S, Contu A (2008) Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Mar Pollut Bull 57:832–837.  https://doi.org/10.1016/j.marpolbul.2008.02.038 CrossRefGoogle Scholar
  96. Scipy https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html - Copyright 2008-2009, The Scipy community. Last updated on May 11, 2014Google Scholar
  97. Sforzini S, Oliveri C, Orrù A, Chessa G, Pacchioni B, Millino C, Jha AN, Viarengo A, Banni M (2018) Application of a new targeted low density microarray and conventional biomarkers to evaluate the health status of marine mussels: a field study in Sardinian coast, Italy. Sci Total Environ 628–629:319–328.  https://doi.org/10.1016/j.scitotenv.2018.01.293 CrossRefGoogle Scholar
  98. Simkiss K, Mason AZ (1983) 4 - Metal ions: metabolic and toxic effects 1 A2 - Hochachka, Peter W. In: The Mollusca. Academic Press, San Diego, pp 101–164Google Scholar
  99. Soldati AL, Jacob DE, Glatzel P, Swarbrick JC, Geck J (2016) Element substitution by living organisms: the case of manganese in mollusc shell aragonite. Sci Rep 6:22514.  https://doi.org/10.1038/srep22514 CrossRefGoogle Scholar
  100. Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim Acta Part B At Spectrosc 62:63–68.  https://doi.org/10.1016/j.sab.2006.12.002 CrossRefGoogle Scholar
  101. Soleimani F, Dobaradaran S, Hayati A, Khorsand M, Keshtkar M (2016) Data on metals (Zn, Al, Sr, and Co) and metalloid (As) concentration levels of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Data in Brief 9:429–432.  https://doi.org/10.1016/j.dib.2016.09.017 CrossRefGoogle Scholar
  102. Stara P, Rizzo R, Tanca GA (1996) Iglesiente-Arburese: Miniere e Minerali. Centrooffset, SienaGoogle Scholar
  103. Stecher HA, Krantz DE, Lord CJ et al (1996) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochim Cosmochim Ac 60:3445–3456.  https://doi.org/10.1016/0016-7037(96)00179-2 CrossRefGoogle Scholar
  104. Steinhardt J, Butler PG, Carroll ML, Hartley J (2016) The application of long-lived bivalve sclerochronology in environmental baseline monitoring. Front Mar Sci 3:176.  https://doi.org/10.3389/fmars.2016.00176 CrossRefGoogle Scholar
  105. Suzuki M, Murayama E, Inoue H et al (2004) Characterization of prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382:205–213.  https://doi.org/10.1042/BJ20040319 CrossRefGoogle Scholar
  106. Suzuki M, Sakuda S, Nagasawa H (2007) Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci Biotechnol Biochem 71:1735–1744CrossRefGoogle Scholar
  107. Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of Bivalvia: introduction, nuculacea-trigonacea. Nuculacea-Trigonacea Bull Br Mus 3:1–125Google Scholar
  108. Terzano R, Al Chami Z, Vekemans B et al (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agric Food Chem 56:3222–3231.  https://doi.org/10.1021/jf073304e CrossRefGoogle Scholar
  109. Tevesz MJS, Carter JG (1980) Environmental relationships of shell form and structure of Unionacean bivalves. In: Skeletal growth of aquatic organisms. Rhoads D.C., Lutz R., Plenum, New York, pp 295–322Google Scholar
  110. Torchio R, Meneghini C, Mobilio S, Capellini G, Garcia Prieto A, Alonso J, Fdez-Gubieda ML, Turco Liveri V, Longo A, Ruggirello AM, Neisius T (2010) Microstructure and magnetic properties of colloidal cobalt nano-clusters. J Magn Magn Mater 322:3565–3571.  https://doi.org/10.1016/j.jmmm.2010.07.008 CrossRefGoogle Scholar
  111. Tsukamoto D, Sarashina I, Endo K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180.  https://doi.org/10.1016/j.bbrc.2004.06.072 CrossRefGoogle Scholar
  112. Tynan S, Eggins S, Kinsley L et al (2005) Mussel shells as environmental tracers: an example from the Loveday Basin. Regolith:314–317Google Scholar
  113. Vaughn CC (2018) Ecosystem services provided by freshwater mussels. Hydrobiologia 810:15–27.  https://doi.org/10.1007/s10750-017-3139-x CrossRefGoogle Scholar
  114. Weiner S, Lowenstam HA, Hood L (1976) Characterization of 80-million-year-old mollusk shell proteins. Proc Natl Acad Sci U S A 73:2541–2545CrossRefGoogle Scholar
  115. Wilbur KM, Saleuddin ASM (1983) Shell formation. In: The Mollusca. Saleuddin ASM, Wilbur KM, Academic, New York, pp 235–287Google Scholar
  116. Wong KW, Yap CK, Nulit R, Hamzah MS, Chen SK, Cheng WH, Karami A, al-Shami SA (2017) Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river. Environ Sci Pollut Res Int 24:116–134.  https://doi.org/10.1007/s11356-016-7951-z CrossRefGoogle Scholar
  117. Yan H, Chen J, Xiao J (2014) A review on bivalve shell, a tool for reconstruction of paleo-climate and paleo-environment. Chin J Chem 33:310–315.  https://doi.org/10.1007/s11631-014-0692-0 CrossRefGoogle Scholar
  118. Yao Z, Xia M, Li H, Chen T, Ye Y, Zheng H (2014) Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Crit Rev Environ Sci Technol 44:2502–2530.  https://doi.org/10.1080/10643389.2013.829763 CrossRefGoogle Scholar
  119. Yoshimura T, Tamenori Y, Suzuki A, Nakashima R, Iwasaki N, Hasegawa H, Kawahata H (2013) Element profile and chemical environment of sulfur in a giant clam shell: insights from μ-XRF and x-ray absorption near-edge structure. Chem Geol 352:170–175.  https://doi.org/10.1016/j.chemgeo.2013.05.035 CrossRefGoogle Scholar
  120. Zuykov M, Pelletier E, Harper DAT (2013) Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93:201–208.  https://doi.org/10.1016/j.chemosphere.2013.05.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Medas
    • 1
  • Ilaria Carlomagno
    • 2
    • 3
  • Carlo Meneghini
    • 2
  • Giuliana Aquilanti
    • 4
  • Tohru Araki
    • 5
  • Diana E. Bedolla
    • 4
  • Carla Buosi
    • 1
  • Maria Antonietta Casu
    • 6
  • Alessandra Gianoncelli
    • 4
  • Andrei C. Kuncser
    • 7
  • V. Adrian Maraloiu
    • 7
  • Giovanni De Giudici
    • 1
  1. 1.Department of Chemical and Geological SciencesUniversity of CagliariCagliariItaly
  2. 2.Department of SciencesUniversity of Roma TreRomeItaly
  3. 3.Elettra-Sincrotrone TriesteTriesteItaly
  4. 4.Elettra-Sincrotrone TriesteTriesteItaly
  5. 5.Diamond Light Source, Diamond HouseHarwell Science and Innovation CampusOxfordshireUK
  6. 6.UOS of Cagliari, National Research Council, Scientific and Technological Park of Sardinia POLARISInstitute of Translational PharmacologyPulaItaly
  7. 7.Laboratory of Atomic Structures and Defects in Advanced MaterialsNational Institute of Materials PhysicsMagureleRomania

Personalised recommendations