Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Silkworm, Bombyx mori, as an alternative model organism in toxicological research

Abstract

Silkworms, Bombyx mori , are a promising model animal in health safety and environmental pollution assessment due to their sensitivity to chemical compounds like pesticides, drugs, and heavy metals, in addition to other features like their low cost and body characteristics and their full genome sequencing. In this review, we summarize the silkworm advantages as a model organism in toxicological research.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ai J, Zhu Y, Duan J, Yu Q, Zhang G, Wan F, Xiang ZH (2011) Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. J Gene 480:42–50. https://doi.org/10.1016/j.gene.2011.03.002

  2. Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279. https://doi.org/10.3389/fgene.2014.00279

  3. Asami Y, Horie R, Hamamoto H, Sekimizu K (2010) Use of silkworms for identification of drug candidates having appropriate pharmacokinetics from plant sources. BMC Pharmacol 10:7. https://doi.org/10.1186/1471-2210-10-7

  4. Barré-Sinoussi F, Montagutelli X (2015) Animal models are essential to biological research: issues and perspectives. Future Sci OA 1:FSO63. https://doi.org/10.4155/fso.15.63

  5. Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H (2017) Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater. Des. 129:25–134. https://doi.org/10.1016/j.matdes.2017.04.096

  6. Cheon SH, Lee KH, Kwon JY, Ryu HN, Yu DH, Choi YS, Kim DI (2007) Effects of silkworm hemolymph on cell viability and hCTLA4Ig production in transgenic rice cellsuspension cultures. J Microbiol Biotechnol 17:1944–1948

  7. Deng D, Xu H, Wang F, Duan X, Ma S, Xiang Z, Xia Q (2013) The promoter of Bmlp3 gene can direct fat body-specific expression in the transgenic silkworm, Bombyx mori. Transgenic Res 22:1055–1063. https://doi.org/10.1007/s11248-013-9705-8

  8. Dong H, Zhang S, Tao H, Chen Z, Li X, Qiu J, Cui W, Sima Y, Cui W, Xu S (2017a) Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. J Scientific Reports 7:10972. https://doi.org/10.1038/s41598-017-11592-4

  9. Dong HL, Zhang SX, Tao H, Chen ZH, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ (2017b) Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Sci Rep 7:10972. https://doi.org/10.1038/s41598-017-11592-4

  10. Dong Z, Zhao P, Zhang Y, Song Q, Zhang X, Guo P, Wang D, Xia Q (2016) Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori. Sci Rep 6:21158. https://doi.org/10.1038/srep21158

  11. Furdui EM, Mărghitaş LA, Dezmirean DS, Paşca I, Pop IF, Erler S, Schlüns EA (2014) Genetic characterization of Bombyx mori (Lepidoptera:Bombycidae) breeding and hybrid lines with different geographic origins. J Insect Sci 14:211. https://doi.org/10.1093/jisesa/ieu073.Print2014

  12. Franzetti E, Casartelli M, D'Antona P, Montali A, Romanelli D, Cappellozza S, Caccia S, Grimaldi A, de Eguileor M, Tettamanti G (2016) Midgut epithelium in molting silkworm: a fine balance among cell growth, differentiation, and survival. Arthropod Struct Dev 45:368–379. https://doi.org/10.1016/j.asd.2016.06.002

  13. Ganesh P, Selvisabhanayakam P, Balasundaram D, Pradhap M, Vivekananthan T, Mathivanan V (2012) Effect of food supplementation with silver nanoparticles (AgNps) on feed efficacy of silkworm, Bombyx mori (L.) (Lepidoptera: Bombycidae). Int. J. Res. Biol. Sci. 2:60–67

  14. Gutiérrez-Lovera C, Vázquez-Ríos AJ, Guerra-Varela J, Sánchez L, de la Fuente M (2017) The potential of zebrafish as a model organism for improving the translation of genetic anticancer nanomedicines. Genes (Basel) 8:349. https://doi.org/10.3390/genes8120349

  15. Hanaoka N, Takano Y, Shibuya K, Fugo H, Uehara Y, Niimi M (2008) Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. Eukaryot Cell 7:1640–1648. https://doi.org/10.1128/EC.00129-08

  16. Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K (2009) Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol 149:334–339. https://doi.org/10.1016/j.cbpc.2008.08.008

  17. Hou Y, Xia Q, Zhao P, Zou Y, Liu H, Guan J, Gong J, Xiang Z (2007) Studies on middle and posterior silk glands of silkworm (Bombyx mori) using two-dimensional electrophoresis and mass spectrometry. Insect Biochem Mol Biol 37:486–496. https://doi.org/10.1016/j.ibmb.2007.02.011

  18. Hou Y, Zou Y, Wang F, Gong J, Zhong X, Xia Q, Zhao P (2010) Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. Proteome Sci 8:45. https://doi.org/10.1186/1477-5956-8-45

  19. Inagaki Y, Matsumoto Y, Kataoka K, Matsuhashi N, Sekimizu K (2012) Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph. BMC Pharmacol Toxicol 13(13). https://doi.org/10.1186/2050-6511-13-13

  20. InagakiY MY, Ishii M, Uchino K, Sezutsu H, Sekimizu K (2015) Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein. Sci Rep 5:11180. https://doi.org/10.1038/srep11180

  21. International Silkworm Genome Consortium (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045. https://doi.org/10.1016/j.ibmb.2008.11.004

  22. Ishii M, Matsumoto Y, Sekimizu K (2016) Usefulness of silkworm as a host animal for understanding pathogenicity of Cryptococcus neoformans. Drug Discov Ther 10:9–13. https://doi.org/10.5582/ddt.2016.01015

  23. Jalali EV, Seidavi A, Lavvaf A (2011) Determination and comparison of performance and production properties in eight Iranian silkworm hybrids. J Animal and Veterinary Advances 10:1141–1157. https://doi.org/10.3923/javaa.2011.1141.1157

  24. Jingade AH, Vijayan K, Somasundaram P, Srivasababu GK, Kamble CK (2011) A review of the implications of heterozygosity and inbreeding on germplasm biodiversity and its conservation in the silkworm, Bombyx mori. J Insect Sci 11(8). https://doi.org/10.1673/031.011.0108

  25. Jiang L, Xia Q (2014) The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol 48:1–7. https://doi.org/10.1016/j.ibmb.2014.02.003

  26. Kaito C, Sekimizu K (2007) A silkworm model of pathogenic bacterial infection. Drug Discov Ther 1:89–93

  27. Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K (2005) Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol 56:934–944

  28. Li XH, Wu XF, Yue WF, Liu JM, Li GL, Miao YG (2006) Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage. J Proteome Res 5:2809–2814. https://doi.org/10.1021/pr0603093

  29. Li JY, Li JS, Zhong BX (2012) Proteomic profiling of the hemolymph at the fifth instar of the silkworm Bombyx mori. Insect Sci 19:441–454. https://doi.org/10.1111/j.1744-7917.2011.01452.x

  30. Matsumoto Y, IshiiM HY, Miyazaki S, SugitaT SE, Sekimizu K (2015) Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep 5:10722. https://doi.org/10.1038/srep10722

  31. Meng X, Abdelli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K (2017) Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biol Trace Elem Res 180:327–337. https://doi.org/10.1007/s12011-017-1001-7

  32. Nwibo DD, Hamamoto H, Matsumoto Y, Kaito C, Sekimizu K (2015) Current use of silkworm larvae (Bombyx mori) as an animal model in pharmaco-medical research. Drug Discov Ther 9:133–135. https://doi.org/10.5582/ddt.2015.01026

  33. Ni M, Li F, Wang B, Xu K, Zhang H, Hu J, Tian J, Shen W, Li B (2015) Effect of TiO2 nanoparticles on the reproduction of silkworm. Biol Trace Elem Res 164:106–113. https://doi.org/10.1007/s12011-014-0195-1

  34. Panthee S, Paudel A, Hamamoto H, Sekimizu K (2017) Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front Microbiol 8(373). https://doi.org/10.3389/fmicb.2017.00373

  35. Pereira NC, Munhoz RE, Bignotto TS, Bespalhuk R, Garay LB, Saez CR, Fassina VA, Nembri A, Fernandez MA (2013) Biological and molecular characterization of silkworm strains from the Brazilian germplasm bank of Bombyx mori. J Genet Mol Res 12:2138–2147. https://doi.org/10.4238/2013.June.28.1

  36. Rao CGP, Seshagiri SV, Ramesh C, Ibrahim BK, Nagaraju H, Chandrashekaraiah (2006) Evaluation of genetic potential of the polyvoltine silkworm (Bombyx mori L.) germplasm and identification of parents for breeding programme. J Zhejiang University Science B 7:215–220. https://doi.org/10.1631/jzus.2006.B0215

  37. Shen WF, Zhao XP, Wang Q, Niu BL, Liu Y, He LH, Weng HB, Meng ZQ, Chen YY (2011) Genotoxicity evaluation of low doses of avermectin to hemocytes of silkworm(Bombyx mori) and response of gene expression to DNA damage. Pestic Biochem Physiol 101:159–164. https://doi.org/10.1016/j.pestbp.2011.08.011

  38. Sekimizu N, Paudel A, Hamamoto H (2012) Animal welfare and use of silkworm as a model animal. Drug Discov Ther 6:226–229

  39. Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, NagamuraY K-OK, Kajiwara H, Sezutsu H, Nagaraju J, Goldsmith MR, Xia Q, Yamamoto K, Mita K (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics 10:486. https://doi.org/10.1186/1471-2164-10-486

  40. Song J, Tang D, Li Z, Tong X, Zhang J, Han M, Hu H, Lu C, Dai F (2017) Variation of lifespan in multiple strains, and effects of dietary restriction and BmFoxO on lifespan in silkworm, Bombyx mori. J Oncotarget 8:7294–7300. https://doi.org/10.18632/oncotarget.14235

  41. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2010) From modes to movement in the behavior of Caenorhabditis elegans. PLoS One 5:e13914. https://doi.org/10.1371/journal.pone.0013914

  42. Sun X, Valk HVD, Jiang H, Wang X, Yuan S, Zhang Y, Roessink I, Gao X (2012) Development of a standard acute dietary toxicity test for the silkworm (Bombyx mori L.). Crop Prot 42:260–267

  43. Tabunoki H, Bono H, Ito K, Yokoyama T (2016) Can the silkworm (Bombyx mori) be used as a human disease model? Drug Discov Ther 10:3–8. https://doi.org/10.5582/ddt.2016.01011

  44. Tian JH, Hu JS, Li FC, Ni M, Li YY, Wang BB, Xu KZ, Shen WD, Li B (2016) Effects of TiO2 nanoparticles on nutrition metabolism in silkworm fat body. Biol Open 5:764–769. https://doi.org/10.1242/bio.015610

  45. Usui K, Nishida S, Sugita T, Ueki T, Matsumoto Y, Okumura H, Sekimizu K (2016) Acute oral toxicity test of chemical compounds in silkworms. Drug Discov Ther 10:57–61. https://doi.org/10.5582/ddt.2016.01025

  46. Wang L, Su M, Zhao X, Hong J, Yu X, Xu B, Sheng L, Liu D, Shen W, Li B, Hong F (2015) Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Arch Environ Contam Toxicol 68:534–542. https://doi.org/10.1007/s00244-014-0121-8

  47. Wu ZD. (1980). The silkworm anatomy and physiology; Zhejiang Agricultural University Publishing, house: Hangzhou, China, pp.83–84

  48. Yu X, Sun Q, Li B, Xie Y, Zhao X, Hong J, Sheng L, Sang X, Gui S, Wang L, Shen W, Hong F (2015) Mechanisms of larval midgut damage following exposure to phoxim and repair of phoxim-induced damage by cerium in Bombyx mori. Environ Toxicol 30:452–460. https://doi.org/10.1002/tox.21921

  49. Zhou L, Li H, Hao F, Li N, Liu X, Wang G, Wang Y, Tang H (2015) Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L). J Proteome Res 14:2331–2347. https://doi.org/10.1021/acs.jproteome.5b00159

Download references

Funding

This work was supported by the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundation of China (Nos. 31572467, 31272507, 31570150, 31602008, and 31550110210), the National Science Foundation of Jiangsu Province (BK20150495), Postdoctoral Science Foundation of Jiangsu Province (1501012B), and Postgraduate Research and Innovation Project of Jiangsu Province (No. CXLX12-0671).

Author information

Correspondence to Chen Keping.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdelli, N., Peng, L. & Keping, C. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environ Sci Pollut Res 25, 35048–35054 (2018). https://doi.org/10.1007/s11356-018-3442-8

Download citation

Keywords

  • Silkworm
  • Model organism
  • Toxicity