Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36624–36635 | Cite as

Hexabromocyclododecane: concentrations and isomer profiles from sources to environmental sinks

  • Krzysztof Okonski
  • Lisa Melymuk
  • Jiří Kohoutek
  • Jana Klánová
Research Article
  • 35 Downloads

Abstract

Concentrations and isomer compositions of hexabromocyclododecane (HBCD) were measured in six matrices in the Czech Republic (HBCD technical mixture; consumer products; indoor and outdoor air at industrial, urban and background locations; soils; and sediments) to provide insight into changes in concentrations and isomer profiles between environmental sources and environmental sinks. A distinct gradient of air concentrations was observed, from 1600 ng/m3 in the industrial area to < 10 pg/m3 in urban and background air. Isomer profiles also showed a distinct gradient in air, from 95% γ-HBCD in industrial air to 40% γ-HBCD in background air, suggesting the influence of differential atmospheric transport and phototransformation of γ- to α-HBCD. Concentrations and isomer compositions in consumer products were highly variable and indicated differences between products with intentional addition of HBCD as a flame retardant versus those with HBCD as an impurity, e.g., from recycled plastic. Understanding the isomer-specific environmental distributions and processes remains important for risk assessment and toxicology, considering the continued use of HBCD and the isomer-specific differences in uptake, metabolism, and toxicity, and further, demonstrates the utility of isomer profiles to better understand environmental processes of HBCDs.

Keywords

HBCD Flame retardants Atmospheric transport Sources Isomer profiles Consumer products 

Notes

Acknowledgments

We thank Michal Oravec for his help with LC-MS/MS analysis, Ondřej Sáňka for creating figures, and Roman Prokeš for collecting the samples. This research has been supported by the Czech Ministry of Education, Youth and Sports (LO1214) and RECETOX Research Infrastructure (LM2015051 and CZ.02.1.01/0.0/0.0/16_013/0001761).

Supplementary material

11356_2018_3381_MOESM1_ESM.pdf (796 kb)
ESM 1 (PDF 795 kb)

References

  1. Abdallah MA-E, Harrad SJ, Covaci A (2008) Hexabromocyclododecanes and tetrabromobisphenol-a in indoor air and dust in Birmingham, U.K: implications for human exposure. Environ Sci Technol 42:6855–6861CrossRefGoogle Scholar
  2. Arnot J, McCarty L, Armitage J, et al (2009) An evaluation of hexabromocyclododecane (HBCD) for persistent organic pollutant (POP) properties and the potential for adverse effects in the environmentGoogle Scholar
  3. Barontini F, Cozzani V, Petarca L (2001) Thermal stability and decomposition products of hexabromocyclododecane. Ind Eng Chem Res 40:3270–3280.  https://doi.org/10.1021/ie001002v CrossRefGoogle Scholar
  4. Bečanová J, Komprdová K, Vrana B, Klánová J (2016) Annual dynamics of perfluorinated compounds in sediment: a case study in the Morava River in Zlín distric, Czech Republic. Chemosphere 151:225–233.  https://doi.org/10.1016/j.chemosphere.2016.02.081 CrossRefGoogle Scholar
  5. Birnbaum LS, Staskal DF (2003) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17CrossRefGoogle Scholar
  6. Bohlin P, Audy O, Škrdlíková L, Kukučka P, Přibylová P, Prokeš R, Vojta Š, Klánová J (2014a) Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks. Environ Sci Process Impacts 16:433–444CrossRefGoogle Scholar
  7. Bohlin P, Audy O, Škrdlíková L, Kukučka P, Vojta Š, Přibylová P, Prokeš R, Čupr P, Klánová J (2014b) Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments. Environ Sci Process Impacts 16:2617–2626.  https://doi.org/10.1039/C4EM00305E CrossRefGoogle Scholar
  8. Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, de Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688CrossRefGoogle Scholar
  9. Covaci A, Harrad SJ, Abdallah MA-E, Ali N, Law RJ, Herzke D, de Wit CA (2011) Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 37:532–556CrossRefGoogle Scholar
  10. Covaci A, Roosens L, Dirtu AC, Waegeneers N, van Overmeire I, Neels H, Goeyens L (2009) Brominated flame retardants in Belgian home-produced eggs: levels and contamination sources. Sci Total Environ 407:4387–4396.  https://doi.org/10.1016/j.scitotenv.2008.09.057 CrossRefGoogle Scholar
  11. Davis JW, Gonsior SJ, Markham DA, Friederich U, Hunziker RW, Ariano JM (2006) Biodegradation and product identification of [14C]Hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmantal Sci Technol 40:5395–5401CrossRefGoogle Scholar
  12. de Wit CA (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624Google Scholar
  13. de Wit CA (2000) Brominated flame retardants. Report 5065, Swedish Environmental Protection Agency. In: ISBN 91–620–5065-6. Sweden, StockholmGoogle Scholar
  14. Degrendele C, Okonski K, Melymuk L, Landlová L, Kukučka P, Audy O, Kohoutek J, Čupr P, Klánová J (2016) Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides. Atmos Chem Phys 16:1531–1544.  https://doi.org/10.5194/acp-16-1531-2016 CrossRefGoogle Scholar
  15. Du M, Fang C, Qiu L et al (2015) Diastereoisomer-specific effects of hexabromocyclododecanes on hepatic aryl hydrocarbon receptors and cytochrome P450s in zebrafish (Danio rerio). Chemosphere 132:24–31.  https://doi.org/10.1016/j.chemosphere.2015.02.049 CrossRefGoogle Scholar
  16. Du M, Zhang D, Yan C, Zhang X (2012) Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos. Aquat Toxicol 112–113:1–10.  https://doi.org/10.1016/j.aquatox.2012.01.013 CrossRefGoogle Scholar
  17. Eguchi A, Isobe T, Ramu K, Tue NM, Sudaryanto A, Devanathan G, Viet PH, Tana RS, Takahashi S, Subramanian A, Tanabe S (2013) Soil contamination by brominated flame retardants in open waste dumping sites in Asian developing countries. Chemosphere 90:2365–2371.  https://doi.org/10.1016/j.chemosphere.2012.10.027 CrossRefGoogle Scholar
  18. Erratico C, Zheng X, Van Den EN et al (2016) Stereoselective metabolism of α-,β-, and γ-hexabromocyclododecanes (HBCDs) by human liver microsomes and CYP3A4. Environ Sci Technol 50:8263–8273.  https://doi.org/10.1021/acs.est.6b01059 CrossRefGoogle Scholar
  19. Fernandes AR, Mortimer D, Rose M, Smith F, Panton S, Garcia-Lopez M (2016) Bromine content and brominated flame retardants in food and animal feed from the UK. Chemosphere 150:472–478.  https://doi.org/10.1016/j.chemosphere.2015.12.042 CrossRefGoogle Scholar
  20. Fromme H, Becher G, Hilger B, Völkel W (2016) Brominated flame retardants—exposure and risk assessment for the general population. Int J Hyg Environ Health 219:1–23.  https://doi.org/10.1016/j.ijheh.2015.08.004 CrossRefGoogle Scholar
  21. Gao S, Wang J, Yu Z, Guo Q, Sheng G, Fu J (2011) Hexabromocyclododecanes in surface soils from e-waste recycling areas and industrial areas in South China: concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory. Environ Sci Technol 45:2093–2099.  https://doi.org/10.1021/es1033712 CrossRefGoogle Scholar
  22. Gauthier LT, Hebert CE, Weseloh DVC, Letcher RJ (2007) Current-use flame retardants in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes. Environ Sci Technol 41:4561–4567CrossRefGoogle Scholar
  23. Gerecke AC, Giger W, Hartmann PC, Heeb NV, Kohler HPE, Schmid P, Zennegg M, Kohler M (2006) Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere 64:311–317.  https://doi.org/10.1016/j.chemosphere.2005.12.016 CrossRefGoogle Scholar
  24. Harrad S, Abdallah MA-E, Rose NL, Turner SD, Davidson TA (2009a) Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ Sci Technol 43:9077–9083.  https://doi.org/10.1021/es902185u CrossRefGoogle Scholar
  25. Harrad SJ, Abdallah MA-E (2011) Brominated flame retardants in dust from UK cars—within-vehicle spatial variability, evidence for degradation and exposure implications. Chemosphere 82:1240–1245.  https://doi.org/10.1016/j.chemosphere.2010.12.038 CrossRefGoogle Scholar
  26. Harrad SJ, Abdallah MA-E, Covaci A (2009b) Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust. Environ Int 35:573–579.  https://doi.org/10.1016/j.envint.2008.10.005 CrossRefGoogle Scholar
  27. Heeb NV, Schweizer WB, Kohler M, Gerecke AC (2005) Structure elucidation of hexabromocyclododecanes—a class of compounds with a complex stereochemistry. Chemosphere 61:65–73.  https://doi.org/10.1016/j.chemosphere.2005.03.015 CrossRefGoogle Scholar
  28. Hoh E, Hites RA (2005) Brominated flame retardants in the atmosphere of the east-central United States. Environ Sci Technol 39:7794–7802CrossRefGoogle Scholar
  29. Holoubek I, Klánová J, Jarkovský J, Kohoutek J (2007) Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. J Environ Monit 9:557–563CrossRefGoogle Scholar
  30. ICL-IP Europe BV (2014) Template for third party submission of information on alternatives for applications for authorisation HBCD use in EPS for building applications. In: AmsterdamGoogle Scholar
  31. Jeannerat D, Pupier M, Schweizer S, Mitrev YN, Favreau P, Kohler M (2016) Discrimination of hexabromocyclododecane from new polymeric brominated flame retardant in polystyrene foam by nuclear magnetic resonance. Chemosphere 144:1391–1397.  https://doi.org/10.1016/j.chemosphere.2015.10.021 CrossRefGoogle Scholar
  32. Kakimoto K, Nagayoshi H, Yoshida J, Akutsu K, Konishi Y, Toriba A, Hayakawa K (2012) Detection of dechlorane plus and brominated flame retardants in marketed fish in Japan. Chemosphere 89:416–419.  https://doi.org/10.1016/j.chemosphere.2012.05.072 CrossRefGoogle Scholar
  33. Kalachova K, Hradkova P, Lankova D, Hajslova J, Pulkrabova J (2012) Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci Total Environ 441:182–193.  https://doi.org/10.1016/j.scitotenv.2012.09.061 CrossRefGoogle Scholar
  34. Koch C, Schmidt-Kötters T, Rupp R, Sures B (2015) Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. Environ Pollut 199:26–34.  https://doi.org/10.1016/j.envpol.2015.01.011 CrossRefGoogle Scholar
  35. Koike E, Yanagisawa R, Takano H (2016) Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicol Vitr 32:212–219.  https://doi.org/10.1016/j.tiv.2015.12.013 CrossRefGoogle Scholar
  36. Kukučka P, Audy O, Kohoutek J, Holt E, Kalábová T, Holoubek I, Klánová J (2015) Source identification, spatio-temporal distribution and ecological risk of persistent organic pollutants in sediments from the upper Danube catchment. Chemosphere 138:777–783.  https://doi.org/10.1016/j.chemosphere.2015.08.001 CrossRefGoogle Scholar
  37. Lankova D, Lacina O, Pulkrabova J, Hajslova J (2013) The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula. Talanta 117:318–325.  https://doi.org/10.1016/j.talanta.2013.08.040 CrossRefGoogle Scholar
  38. Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Fernie K, Toms LML, Takigami H (2014) Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environ Int 65:147–158.  https://doi.org/10.1016/j.envint.2014.01.006 CrossRefGoogle Scholar
  39. Li B, Yao T, Sun H, Zhang Y, Yang J (2016) Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms. Sci Total Environ 542:427–434.  https://doi.org/10.1016/j.scitotenv.2015.10.100 CrossRefGoogle Scholar
  40. Li H, Mo L, Yu Z, Sheng G, Fu J (2012) Levels, isomer profiles and chiral signatures of particle-bound hexabromocyclododecanes in ambient air around Shanghai, China. Environ Pollut 165:140–146CrossRefGoogle Scholar
  41. Manø S, Herzke D, Schlabach M (2008a) Nye miljøgifter i luft 2007 Report 1031/2008. Oslo, Norwegian Environment AgencyGoogle Scholar
  42. Manø S, Herzke D, Schlabach M (2008b) Nye miljøgifter i luft. Report 1023/2008. Oslo, Norwegian Environment AgencyGoogle Scholar
  43. Marvin CH, Tomy GT, Armitage JM, Arnot JA, McCarty L, Covaci A, Palace V (2011) Hexabromocyclododecane: current understanding of chemistry, environmental fate and toxicology and implications for global management. Environ Sci Technol 45:8613–8623CrossRefGoogle Scholar
  44. Meijer L, Weiss J, van Velzen MJM, Brouwer A, Bergman Å, Sauer PJJ (2008) Serum concentrations of neutral and phenolic organohalogens in pregnant women and some of their infants in the Netherlands. Environ Sci Technol 42:3428–3433.  https://doi.org/10.1021/es702446p CrossRefGoogle Scholar
  45. Melymuk L, Bohlin-Nizzetto P, Kukučka P, Vojta Š, Kalina J, Čupr P, Klánová J (2016) Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ Pollut 218:392–401.  https://doi.org/10.1016/j.envpol.2016.07.018 CrossRefGoogle Scholar
  46. Melymuk L, Goosey E, Riddell N, Diamond ML (2015) Interlaboratory study of novel halogenated flame retardants: INTERFLAB. Anal Bioanal Chem 407:6759–6769.  https://doi.org/10.1007/s00216-015-8843-7 CrossRefGoogle Scholar
  47. Meng X-Z, Duan Y-P, Yang C, Pan ZY, Wen ZH, Chen L (2011) Occurrence, sources, and inventory of hexabromocyclododecanes (HBCDs) in soils from Chongming Island, the Yangtze River Delta (YRD). Chemosphere 82:725–731.  https://doi.org/10.1016/j.chemosphere.2010.10.091 CrossRefGoogle Scholar
  48. Peled M, Scharia R, Sondack D (1995) Thermal rearrangement of Hexabromo-cyclododecane (HBCD). In: Gerard B, Goldstein MJ (eds) Desmurs J-R. Advances in Organobromine Chemistry II, Amsterdam, pp 92–99Google Scholar
  49. Prokeš R, Vrana B, Klánová J (2012) Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlín district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environ Pollut 166:157–166.  https://doi.org/10.1016/j.envpol.2012.02.022 CrossRefGoogle Scholar
  50. Prokeš R, Vrana B, Komprdová K, Klánová J (2014) Annual dynamics of persistent organic pollutants in various aquatic matrices: a case study in the Morava River in Zlín district, Czech Republic. J Soils Sediments 14:1738–1752.  https://doi.org/10.1007/s11368-014-0931-3 CrossRefGoogle Scholar
  51. Rani M, Shim WJ, Han GM, Jang M, Song YK, Hong SH, (2014) Hexabromocyclododecane in polystyrene based consumer products: an evidence of unregulated use. Chemosphere 110:111–119.  https://doi.org/10.1016/j.chemosphere.2014.02.022 CrossRefGoogle Scholar
  52. Remberger M, Sternbeck J, Palm A, Kaj L, Strömberg K, Brorström-Lundén E (2004) The environmental occurrence of hexabromocyclododecane in Sweden. Chemosphere 54:9–21.  https://doi.org/10.1016/S0045-6535(03)00758-6 CrossRefGoogle Scholar
  53. Roosens L, Abdallah MA-E, Harrad SJ, Neels H, Covaci A (2009) Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum: preliminary results. Environ Health Perspect 117:1707–1712CrossRefGoogle Scholar
  54. Ryan JJ, Rawn DFK (2014) The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. Environ Int 70:1–8.  https://doi.org/10.1016/j.envint.2014.04.020 CrossRefGoogle Scholar
  55. Shi Z-X, Wu Y-N, Li J et al (2009) Dietary exposure assessment of Chinese adults and nursing infants to Tetrabromobisphenol-a and hexabromocyclododecanes: occurrence measurements in foods and human Milk. Environ Sci Technol 43:4314–4319CrossRefGoogle Scholar
  56. Su J, Lu Y, Liu Z, Gao S, Zeng X, Yu Z, Sheng G, Fu JM (2015) Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environ Sci Pollut Res 22:16781–16790.  https://doi.org/10.1007/s11356-015-4779-x CrossRefGoogle Scholar
  57. Tao F, Abdallah MA-E, Ashworth DC et al (2017) Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. Environ Int 105:95–104.  https://doi.org/10.1016/j.envint.2017.05.010 CrossRefGoogle Scholar
  58. Thomsen C, Molander P, Daae HL, Janák K, Froshaug M, Liane VH, Thorud S, Becher G, Dybing E (2007) Occupational exposure to hexabromocyclododecane at an industrial plant. Environ Sci Technol 41:5210–5216.  https://doi.org/10.1021/es0702622 CrossRefGoogle Scholar
  59. Tomy GT, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M (2004) Biomagnification of α- and γ-hexabromocyclododecane isomers in a Lake Ontario food web. Environ Sci Technol 38:2298–2303.  https://doi.org/10.1021/es034968h CrossRefGoogle Scholar
  60. Tomy GT, Halldorson T, Danell R, Law K, Arsenault G, Alaee M, MacInnis G, Marvin CH (2005) Refinements to the diastereoisomer-specific method for the analysis of hexabromocyclododecane. Rapid Commun Mass Spectrom 19:2819–2826.  https://doi.org/10.1002/rcm.2129 CrossRefGoogle Scholar
  61. Ueno D, Alaee M, Marvin C, Muir DCG, Macinnis G, Reiner E, Crozier P, Furdui VI, Subramanian A, Fillmann G, Lam PKS, Zheng GJ, Muchtar M, Razak H, Prudente M, Chung KH, Tanabe S (2006) Distribution and transportability of hexabromocyclododecane (HBCD) in the Asia-Pacific region using skipjack tuna as a bioindicator. Environ Pollut 144:238–247.  https://doi.org/10.1016/j.envpol.2005.12.024 CrossRefGoogle Scholar
  62. US Environmental Protection Agency (2014) Flame retardant alternatives for hexabromocyclododecane (HBCD). EPA PublGoogle Scholar
  63. Van der Ven LTM, Verhoef A, Van de Kuil T et al (2006) A 28-day Oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicol Sci 94:281–292.  https://doi.org/10.1093/toxsci/kfl113 CrossRefGoogle Scholar
  64. Viganò L, Mascolo G, Roscioli C (2015) Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). Environ Sci Pollut Res 22:14050–14066.  https://doi.org/10.1007/s11356-015-4388-8 CrossRefGoogle Scholar
  65. Vojta Š, Bečanová J, Melymuk L, Komprdová K, Kohoutek J, Kukučka P, Klánová J (2017) Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere 168:457–466.  https://doi.org/10.1016/j.chemosphere.2016.11.032 CrossRefGoogle Scholar
  66. Vorkamp K, Bossi R, Riget FF et al (2015) Novel brominated flame retardants and dechlorane plus in Greenland air and biota. Environ Pollut 196:284–291.  https://doi.org/10.1016/j.envpol.2014.10.007 CrossRefGoogle Scholar
  67. Wu J-P, Guan Y-T, Zhang Y, Luo XJ, Zhi H, Chen SJ, Mai BX (2010) Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web. Environ Sci Technol 44:5490–5495CrossRefGoogle Scholar
  68. Zeng L, Yang R, Zhang Q, Zhang H, Xiao K, Zhang H, Wang Y, Lam PKS, Jiang G (2014) Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China. Environ Sci Technol 48:12586–12594CrossRefGoogle Scholar
  69. Zhang X, Yang F, Xu C, Liu W, Wen S, Xu Y (2008) Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicol Vitr 22:1520–1527.  https://doi.org/10.1016/j.tiv.2008.05.006 CrossRefGoogle Scholar
  70. Zhang Y, Lu Y, Wang P, Shi Y (2018) Biomagnification of hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: human exposure implication through food web transfer. Sci Total Environ 624:1213–1220.  https://doi.org/10.1016/j.scitotenv.2017.12.153 CrossRefGoogle Scholar
  71. Zhang Y, Ruan Y, Sun H, Zhao L, Gan Z (2013) Hexabromocyclododecanes in surface sediments and a sediment core from rivers and harbor in the northern Chinese city of Tianjin. Chemosphere 90:1610–1616.  https://doi.org/10.1016/j.chemosphere.2012.08.037 CrossRefGoogle Scholar
  72. Zhao Y, Zhang X, Sojinu OSS (2010) Thermodynamics and photochemical properties of α, β, and γ-hexabromocyclododecanes: a theoretical study. Chemosphere 80:150–156.  https://doi.org/10.1016/j.chemosphere.2010.04.002 CrossRefGoogle Scholar
  73. Zhu N, Schramm K-W, Wang T, Henkelmann B, Fu J, Gao Y, Wang Y, Jiang G (2015) Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan plateau, China. Sci Total Environ 518–519:328–336.  https://doi.org/10.1016/j.scitotenv.2015.03.024 CrossRefGoogle Scholar
  74. Zhu Z-C, Chen S-J, Zheng J, Tian M, Feng AH, Luo XJ, Mai BX (2014) Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China. Sci Total Environ 481:47–54.  https://doi.org/10.1016/j.scitotenv.2014.02.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, RECETOX (Research Centre for Toxic Compounds in the Environment)Masaryk UniversityBrnoCzech Republic

Personalised recommendations