Environmental Science and Pollution Research

, Volume 25, Issue 36, pp 36759–36764 | Cite as

Molecular isolation and characterization of the kisspeptin system, KISS and GPR54 genes in roach Rutilus rutilus

  • Perrine GeraudieEmail author
  • Marie Gerbron
  • Anne E. Lockyer
  • Susan Jobling
  • Christophe Minier
Short Research and Discussion Article


The reproduction of vertebrates is regulated by endocrine and neuro-endocrine signaling molecules acting along the brain-pituitary-gonad (BPG) axis. The understanding of the neuroendocrine role played in reproductive function has been recently revolutionized since the KiSS1/GPR54 (KiSS1r) system was discovered in 2003 in human and mice. Kisspeptins, neuropeptides that are encoded by the KiSS genes, have been recognized as essential in the regulation of the gonadotropic axis. They have been shown to play key roles in puberty onset and reproduction by regulating the gonadotropin secretion in mammals while physiological roles in vertebrates are still poorly known. In order to provide new knowledge on basic reproductive physiology in fish as well as new tools to assess impacts of endocrine disrupting compounds (EDCs), the neurotransmitter system, i.e., gene/receptor, KISS/GPR54 might constitute an appropriate biomarker. This study provides new understandings on the neuroendocrine regulation of roach reproduction as well as new molecular tools to be used as biomarkers of endocrine disruption. This work completes the set of biomarkers already validated in this species.


Biomarkers Endocrine disruption Fish Neuropeptides Brain pituitary gonad axis 


Funding information

This project was supported by the European program Interreg III and IVA (DIESE). Time allocated to Perrine Geraudie was partially covered by the funding program "Hazardous substances" from the High North Research Centre for Climate and the Environment. Framsenteret, with the project number 9165 M.


  1. Akazome Y, Kanda S, Okubo K, Oka Y (2010) Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain. J Fish Biol 76(1):161–182CrossRefGoogle Scholar
  2. Alvarado MV, Carrillo M, Felip A (2013) Expression of kisspeptins and their receptors, gnrh-1/gnrh-II-1a and gonadotropin genes in the brain of adult male and female European sea bass during different gonadal stages. Gen Comp Endocrinol 187:104–116CrossRefGoogle Scholar
  3. Arai AC (2009) The role of kisspeptin and GPR54 in hippocampus. Peptides 30:16–25CrossRefGoogle Scholar
  4. Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the seine estuary (Normandy), France. Aquat Toxicol 79:257–267CrossRefGoogle Scholar
  5. Colborn T, vom Saal F, Soto A (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384CrossRefGoogle Scholar
  6. De Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976CrossRefGoogle Scholar
  7. Dufour S, Weltzien F-A, Sebert M-E, Le Belle N, Vidal B, Vernier P, Pasqualini C (2005) Dopaminergic inhibition of reproduction in teleost fishes ecophysiological and evolutionary implications. Ann N Y Acad Sci 1040:9–21CrossRefGoogle Scholar
  8. Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C (2010) Neuroendocrine control by dopamine of teleost reproduction. J Fish Biol 76:129–160CrossRefGoogle Scholar
  9. Felip A, Zanuy S, Pineda R, Pinilla L, Carrillo M, Tena-Sempere M, Gómez A (2009) Evidence for two distinct kiss genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Mol Cell Endocrinol 312(1–2):61–71CrossRefGoogle Scholar
  10. Geraudie P, Gerbron M, Hill E, Minier C (2010a) Roach (Rutilus rutilus) reproductive cycle: a study of biochemical and histological parameters in a low contaminated site. Fish Physiol Biochem 36(3):767–777CrossRefGoogle Scholar
  11. Geraudie P, Gerbron M, Minier C (2010b) Seasonal variations and alterations of sex steroid levels during the reproductive cycle of male roach (Rutilus rutilus). Mar Environ Res 69(1):S53–S55CrossRefGoogle Scholar
  12. Geraudie P, Hinfray N, Gerbron M, Brion F, Porcher JM, Minier C (2011) Brain cytochrome P450 aromatase activity in roach (Rutilus rutilus): seasonal variations, impact of environmental contaminants and parasitism. Aquat Toxicol 105:378–384CrossRefGoogle Scholar
  13. Geraudie P, Gerbron M, Minier (2017) Endocrine disruption effects in male and intersex roach (Rutilus rutilus, L.) from French rivers: an integrative approach based on subcellular to individual responses. Comp Biochem Physiol B Biochem Mol Biol.
  14. Gerbron M, Geraudie P, Fernandes D, Boulanger-Lecomte C, Minier C, Porte C (2014) Endocrine disruption in female roach (Rutilus rutilus) from the Seine River. France Envir Pollut 191:58–62CrossRefGoogle Scholar
  15. Jobling S, Coey S, Whitmore JG, Kime DE, Van Look KJ, McAllister BG, Beresford N, Henshaw AC, Brighty G, Tyler CR, Sumpter JP (2002) Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol Reprod 67(2):515–524CrossRefGoogle Scholar
  16. Kanda S, Akazome Y, Matsunaga T, Yamamoto N, Yamada S, Tsukamura H, Maeda K, Oka Y (2008) Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (Oryzias latipes). Endocrinology 149(5):2467–2476CrossRefGoogle Scholar
  17. Kanda S, Karigo T, Oka Y (2012) Steroid sensitive kiss2 neurones in the goldfish: evolutionary insights into the duplicate kisspeptin gene-expressing neurones. J Neuroendocrinol 24:897–906CrossRefGoogle Scholar
  18. Kitahashi T, Ogawa S, Parhar IS (2009) Cloning and expression of kiss2 in the zebrafish and medaka. Endocrinology 150:821–831CrossRefGoogle Scholar
  19. Lee YR, Tsunekawa K, Moon MJ, Um HN, Hwang JI, Osugi T, Otaki N, Sunakawa Y, Kim K, Vaudry H, Kwon HB, Seong JY, Tsutsui K (2009) Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology 150:2837–2846CrossRefGoogle Scholar
  20. Li S, Zhang Y, Liu Y, Huang X, Huang W, Lu D, Zhu P, Shi Y, Cheng CHK, Liu X, Lin H (2009) Structural and functional multiplicity of the kisspeptin/GPR54 system in goldfish (Carassius auratus). J Endocrinol 201:407–418CrossRefGoogle Scholar
  21. Mechaly AS, Viñas J, Piferrer F (2011) Gene structure analysis of kisspeptin-2(Kiss2) in the Senegalese sole (Solea senegalensis): characterization of two splice variants of Kiss2, and novel evidence for metabolic regulation of kisspeptin signaling in non-mammalian species. Mol Cell Endocrinol 339:14–24Google Scholar
  22. Mechaly AS, Vinas J, Piferrer F (2013) The kisspeptin system genes in teleost fish, their structure and regulation with particular attention to the situation in Pleuronectiformes. Gen Comp Endocrinol 188:258–268CrossRefGoogle Scholar
  23. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713–743Google Scholar
  24. Ogawa S, Parhar IS (2013) Anatomy of the kisspeptin systems in teleosts. Gen Comp Endocrinol 181:169–174Google Scholar
  25. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein coupled receptor. Nature 411(6387):613–617CrossRefGoogle Scholar
  26. Pasquier J, Kamech N, Lafont AG, Vaudry H, Rousseau K, Dufour S (2014) Kisspeptin/kisspeptin receptors. J Mol Endocrinol 52:T101–T117CrossRefGoogle Scholar
  27. Popesku JT, Martyniuk CJ, Mennigen J, Xiong H, Zhang D, Xia X, Cossins AR, Trudeau VL (2008) The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Mol Cell Endocrinol 293:43–56CrossRefGoogle Scholar
  28. Schulz RW, Goos HJT (1999) Puberty in male fish: concepts and recent developments with special reference to the African catfish (Clarias gariepinus). Aquaculture 177:5–12CrossRefGoogle Scholar
  29. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627CrossRefGoogle Scholar
  30. Servili A, Le Page Y, Leprince J, Caraty A, Escobar S, Parhar IS, Seong JY, Vaudry H, Kah O (2011) Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. Endocrinology 152:1527–1540CrossRefGoogle Scholar
  31. Shahjahan M, Motohashi E, Doi H, Ando H (2010) Elevation of kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season. Gen Comp Endocrinol 169:48–57CrossRefGoogle Scholar
  32. Smith JT, Clay SM, Caraty A, Clarke IJ (2007) KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 148:1150–1157CrossRefGoogle Scholar
  33. Tena-Sempere M (2006) KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology 83(5–6):275–281CrossRefGoogle Scholar
  34. Tena-Sempere M, Felip A, Gomez A, Zanuy S, Carrillo M (2012) Comparative insights of the kisspeptin/kisspeptin receptor system: lessons from non-mammalian vertebrates. Gen Comp Endocrinol 175:234–243CrossRefGoogle Scholar
  35. Tyler C, Lange A, Paull G, Katsu Y, Iguchi T (2007) The roach (Rutilus rutilus) as a sentinel for assessing endocrine disruption. Environ Sci 14:235–253Google Scholar
  36. Vacher C, Mananos EL, Breton B, Marmignon MH, Saligaut C (2000) Modulation of pituitary dopamine D1 or D2 receptors and secretion of follicle-stimulating hormone and luteinizing hormone during the annual reproductive cycle of female rainbow trout. J Neuroendocrinol 12:1219–1226CrossRefGoogle Scholar
  37. van Aerle R, Kille P, Lange A, Tyler CR (2008) Evidence for the existence of a functional Kiss1/Kiss1 receptor pathway in fish. Peptides 29:57–64Google Scholar
  38. Zohar Y, Munoz-Cueto JA, Elizur A, Kah O (2010) Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 165:438–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Perrine Geraudie
    • 1
    Email author
  • Marie Gerbron
    • 2
  • Anne E. Lockyer
    • 3
  • Susan Jobling
    • 3
  • Christophe Minier
    • 2
  1. 1.Akvaplan-Niva, Environmental and Petroleum Research DepartmentFramsenteretTromsøNorway
  2. 2.Laboratory of EcotoxicologyUMR-I 02 SEBIO–Normandie UniversityLe HavreFrance
  3. 3.Institute of Environment, Health and SocietiesBrunel University LondonUxbridgeUK

Personalised recommendations