Advertisement

Transcriptome analysis reveals the molecular response to cadmium toxicity in P. pseudoannulata

  • Juan Wang
  • Baoyang Wei
  • Yuande Peng
  • Ting Huang
  • Huilin Yang
  • Xianjin Peng
  • Chunliang Xie
  • Xiang Xu
  • Zhiying Sun
  • Zhi Wang
  • Zhiyue Lv
  • Qisheng Song
Research Article

Abstract

Cadmium (Cd) can be transferred and accumulated in spiders, posing a survival risk to them. To analyze potential biological damage caused by Cd accumulation and relevant detoxification strategies employed by spiders in response to Cd exposure, we conducted transcriptome analysis of the 5th instar spider P. pseudoannulata, a common spider species playing a vital role in natural pest control in agricultural fields of southern China. We obtained 92,778 unigenes with an average length of 1104 bp and identified 302, 655, and 424 differentially expressed genes (DEGs) in the spiders fed with Cd-containing fruit flies for 2, 5, and 8 days, respectively. Results showed that the body mass of Cd-containing P. pseudoannulata were reduced when compared with controls, presumably due to delayed maturation of tissues and organs. Meanwhile, functional analysis of DEGs indicated that Cd may have a negative effect on neural signal transduction and molt cycle of the spider. For defense strategies, detoxification enzymes like glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and P450, and typical proteins like heat shock protein and metallothionein were all differentially expressed in response to Cd stress. Besides, innate immune responses like toll-like receptor signaling pathways were also upregulated. Multiple critical Cd-responsive genes involved in biological damage, detoxification, and immune response were identified, providing referable foundation for further research on Cd toxicity to P. pseudoannulata.

Keywords

P. pseudoannulata Cadmium Detoxification Immunity Development 

Abbreviations

Cd

cadmium

bp

base pair

P. pseudoannulata

Pardosa pseudoannulata

RNA-Seq

RNA-sequencing

SOD

superoxide dismutase

CAT

catalase

TS-2

spider fed with Cd-containing fruit fly for 2 days

TS-5

spider fed with Cd-containing fruit fly for 5 days

TS-8

spider fed with Cd-containing fruit fly for 8 days

CS

control spider

FPKM

reads per kilobase of exon model per million mapped reads

RT-qPCR

real time quantitative PCR

FDR

false discovery rate

DEGs

differential expression genes

ROS

reactive oxygen species

Notes

Acknowledgements

The authors would like to thank the Oebiotech Enterprise (Shanghai) for their technical assistance.

Funding

This work was supported by the Natural Science Foundation of P. R. China (No. 31472017, 31272339), the key projects of Hunan Provincial Science and Technology Department (No. 2014FJ2003), the Planned Science and Technology Project of Hunan Province, China (No. 2015RS4036), the research project of Hunan Provincial Education Department (No. 15C0666), the Agricultural Science and Technology Innovation Program of China (No. CAAS-ASTIP-IBFC), and the postgraduate research projects of Hunan Province, China (CX2017B361).

Compliance with ethical standards

Ethics approval and consent to participate

The ethical approval was not required. Materials used in this study were unregulated common arthropod spiders, Pardosa pseudoannulata, and insect Drosophila melanogaster.

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11356_2018_3269_MOESM1_ESM.doc (27 kb)
Table S1 (DOC 27 kb)
11356_2018_3269_MOESM2_ESM.xls (568 kb)
Table S2 The list of DEGs at TS-2, TS-5, and TS-8 (FDR < 0.01, absolute value of Log2foldchange > 2). (XLS 567 kb)
11356_2018_3269_MOESM3_ESM.xls (146 kb)
Table S3 GO enrichment analysis for all DEGs (FDR < 0.01). (XLS 146 kb)
11356_2018_3269_MOESM4_ESM.xls (18 kb)
Table S4 Differentially expressed genes involved in cuticular protein. (XLS 18 kb)

References

  1. Ahmad S (2010) Oxidative stress from environmental pollutants. Arch Insect Biochem 29(2):135–157CrossRefGoogle Scholar
  2. Anders S, Huber W (2013) Differential expression of RNA-Seq data at the gene level-the DESeq package. EmblGoogle Scholar
  3. Babczynska A, Wilczek G, Szulinska E, Franiel I (2011) Quantitative immunodetection of metallothioneins in relation to metals concentration in spiders from variously polluted areas. Ecotox Environ Saf 74(6):1498–1503CrossRefGoogle Scholar
  4. Beaty BJ, Mackie RS, Mattingly KS, Carlson JO, Alfredo RK (2002) The midgut epithelium of aquatic arthropods: a critical target organ in environmental toxicology. Environ Health Persp 110(Suppl 6):911–914CrossRefGoogle Scholar
  5. Bondgaard M, Bjerregaard P (2005) Association between cadmium and calcium uptake and distribution during the moult cycle of females shore crabs, Carcinus maenas: an in vivo study. Aquat Toxicol 72:17–28CrossRefGoogle Scholar
  6. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676CrossRefGoogle Scholar
  7. Eraly D, Hendrickx F, Backeljau T, Bervoets L, Lens L (2011) Direct and indirect effects of metal stress on physiology and life history variation in field populations of a lycosid spider. Ecotox Environ Safe 74:1489–1497CrossRefGoogle Scholar
  8. Ferreira JA, Nyangoma SO (2008) A multivariate version of the Benjamini-Hochberg method. J Multivar Anal 99(9):2108–2124CrossRefGoogle Scholar
  9. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187(4):201CrossRefGoogle Scholar
  10. Grabherr MG, Haas BJ, Yassour M et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29(7):644–652CrossRefGoogle Scholar
  11. Grażyna W, Paweł M (1996) Metal body burdens and detoxifying enzymes in spiders from industrially polluted areas. Fresenius J Anal Chem 354(5–6):643–647Google Scholar
  12. Guan D, Mo F, Han Y, Gu W, Zhang M (2015) Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster. Environ Toxicol Phar 39(1):300–306CrossRefGoogle Scholar
  13. Hare L (1992) Aquatic insects and trace metals: bioavailability, bioaccumulation, and toxicity. Crit Rev Toxicol 22(5–6):327–369CrossRefGoogle Scholar
  14. Hendrickx F, Maelfait JP, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134(2):189–194CrossRefGoogle Scholar
  15. Hendrickx F, Maelfait JP, Lens L (2008) Effect of metal stress on life history divergence and quantitative genetic architecture in a wolf spider. J Evolution Biol 21(1):183–193CrossRefGoogle Scholar
  16. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28(5):461–485CrossRefGoogle Scholar
  17. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. J Appl Ecol27(2)Google Scholar
  18. Hu JL (2016) Effect of Cd on development, fecundity and related enzyme activity of Pardosa pseucoanlate. Dissertation, Hunan Agricultural UniversityGoogle Scholar
  19. Itziou A, Kaloyianni M, Dimitriadis VK (2010) In vivo and in vitro effects of metals in reactive oxygen species production, protein carbonylation, and DNA damage in land snails Eobania vermiculata. Arch Environ Con Tox 60(4):697–707CrossRefGoogle Scholar
  20. Järup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure-a review of the literature and a risk estimate. Scand J Work Env Hea 24(suppl 1):1–51Google Scholar
  21. Joseph A, Zhou D, Fitamant J et al (2012) Protein kinases of the hippo pathway: regulation and substrates. Semin Cell Dev Biol 23(7):770–784CrossRefGoogle Scholar
  22. Jung MP, Lee JH (2012) Bioaccumulation of heavy metals in the wolf spider, Pardosa astrigera L. Koch (Araneae: Lycosidae). Environ Monit Assess 184:1773–1779CrossRefGoogle Scholar
  23. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefGoogle Scholar
  24. Lavoie M, Le Faucheur S, Fortin C et al (2009) Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules. Aquat Toxicol 92(2):65CrossRefGoogle Scholar
  25. Liu J, Gao J, Yun Y et al (2013) Bioaccumulation of mercury and its effects on survival, development and web-weaving in the funnel-web spider Agelena labyrinthica, (Araneae: Agelenidae). Bull Environ Contam Toxicol 90(5):558CrossRefGoogle Scholar
  26. Li CC, Li GY, Yun YL, Chen J, Zhang ZT, Peng Y (2016a) The effects of cadmium exposure on fitness-related traits and antioxidant responses in the wolf spider, Pardosa pseudoannulata. Bull Environ Contam Toxicol 97(1):31–36CrossRefGoogle Scholar
  27. Li CC, Wang Y, Li GY et al (2016b) Transcriptome profiling analysis of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae) after cadmium exposure. Int J Mol Sci 17(12):2033CrossRefGoogle Scholar
  28. Li M, Xi X, Xiao G, Cheng H, Yang Z, Zhou G, Ye J, Li Z (2014) National multi-purpose regional geochemical survey in China. J Geochem Explor 139(1):21–30CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  30. Medesani DA, López Greco LS, Rodríguez EM (2004) Interference of cadmium and copper with the endocrine control of ovarian growth, in the estuarine crab Chasmagnathus granulata. Aquat Toxicol 69(2):165–174CrossRefGoogle Scholar
  31. Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Phar 23(3):350–358CrossRefGoogle Scholar
  32. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628CrossRefGoogle Scholar
  33. Pertea G, Huang X, Liang F et al (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651CrossRefGoogle Scholar
  34. Rani A, Kumar A, Lal A et al (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24(4):378–399CrossRefGoogle Scholar
  35. Riechert SE (1974) Thoughts on the ecological significance of spiders. Bioscience 24(6):352–356CrossRefGoogle Scholar
  36. Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A Mol Integr Physiol 146(4):661–671CrossRefGoogle Scholar
  37. Rodríguez Moreno PA, Medesani DA, Rodríguez EM (2003) Inhibition of molting by cadmium in the crab Chasmagnathus granulata (Decapoda Brachyura). Aquat Toxicol 64(2):155–164CrossRefGoogle Scholar
  38. Stalmach M, Wilczek G, Wilczek P, et al (2015) DNA damage in haemocytes and midgut gland cells of Steatoda grossa (Theridiidae) spiders exposed to food contaminated with cadmium Ecotox Environ Safe 113:353–361CrossRefGoogle Scholar
  39. Stohs S, Bagchi DE, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19(3):201–213Google Scholar
  40. Sun M, Ting Li Y, Liu Y, Chin Lee S, Wang L (2016) Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Sci Rep-UK 6(1)Google Scholar
  41. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1CrossRefGoogle Scholar
  42. Tatusov R L, Fedorova N D, Jackson J D, et al (2003) The COG database: an updated version includes eukaryotes Bmc Bioinformatics 4(1): 41Google Scholar
  43. Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157(4):1914CrossRefGoogle Scholar
  44. Wang L, Cui X, Cheng H, Chen F, Wang J, Zhao X, Lin C, Pu X (2015) A review of soil cadmium contamination in China including a health risk assessment. Environ Sci Pollut Res Int 22(21):16441–16452CrossRefGoogle Scholar
  45. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138CrossRefGoogle Scholar
  46. Wiedenmann B, Franke WW, Kuhn C et al (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci U S A 83(10):3500CrossRefGoogle Scholar
  47. Wilczek G, Babczynska A, Augustyniak M, Migula P (2004) Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient. Environ Pollut 132(3):453–461CrossRefGoogle Scholar
  48. Wilczek G, Kramarz P, Babczyńska A (2003) Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations. Comp Biochem Phys C 134(4):501–512Google Scholar
  49. Wu YS, Huang SL, Chung HC et al (2017) Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure. Fish Shellfish Immun 62:116–123CrossRefGoogle Scholar
  50. Xu B, Chen S, Luo Y et al (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6(4):e19052CrossRefGoogle Scholar
  51. Yang H, Peng Y, Tian J, Wang J, Hu J, Wang Z (2016) Spiders as excellent experimental models for investigation of heavy metal impacts on the environment: a review. Environ Earth Sci 75(13)Google Scholar
  52. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–297CrossRefGoogle Scholar
  53. Yuan SS, Lv ZM, Zhu AY et al (2017) Negative effect of chronic cadmium exposure on growth, histology, ultrastructure, antioxidant and innate immune responses in the liver of zebrafish: preventive role of blue light emitting diodes. Ecotox Environ Safe 139:18CrossRefGoogle Scholar
  54. Zhang X, Zhong T, Liu L, Ouyang X (2015) Impact of soil heavy metal pollution on food safety in China. PLoS One 10(8):e0135182CrossRefGoogle Scholar
  55. Zhao WC, Cheng JA, Zhang WJ (2005) Evaluation of the control effects of Pardosa pseudoannulata on Nilaparvata lugens (stål) with a monoclonal antibody. Acta Ecologica Sinica (In Chinese) 25(1):78–82Google Scholar
  56. Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42(13):5008–5013CrossRefGoogle Scholar
  57. Zmudzki S, Laskowski R (2012) Biodiversity and structure of spider communities along a metal pollution gradient. Ecotoxicology 21(5):1523–1532CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Wang
    • 1
    • 2
  • Baoyang Wei
    • 2
  • Yuande Peng
    • 3
  • Ting Huang
    • 2
  • Huilin Yang
    • 2
  • Xianjin Peng
    • 1
  • Chunliang Xie
    • 3
  • Xiang Xu
    • 1
  • Zhiying Sun
    • 2
  • Zhi Wang
    • 1
    • 2
  • Zhiyue Lv
    • 4
  • Qisheng Song
    • 5
  1. 1.College of Life SciencesHunan Normal UniversityChangshaChina
  2. 2.College of Bioscience and BiotechnologyHunan Agriculture UniversityChangshaChina
  3. 3.Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
  4. 4.Department of Parasitology, Zhongshan School of MedicineSun Yat-sen UniversityGuangzhouChina
  5. 5.Division of Plant SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations