Advertisement

Genotoxicity of water samples from an area of the Pampean region (Argentina) impacted by agricultural and livestock activities

  • Sabrina Bollani
  • Laura de Cabo
  • Celio Chagas
  • Juan Moretton
  • Cristian Weigandt
  • Alicia Fabrizio de Iorio
  • Anahí Magdaleno
Global toxicity assessment: chemicals, environmental samples, and analytical methods

Abstract

The aim of this study was to assess the genotoxic potential of surface waters located in a rural area in the north east of Buenos Aires province (Argentina) using the Allium cepa test. Water samples were collected at four sites located in a drainage channel and two sites on the Burgos stream that receives water from the channel, taking into account the sowing and harvesting months and rainfall periods. Analytical determinations revealed high total concentrations of Cd, Cu, Pb, and Zn (maximum values: 0.030, 0.252, 0.176, and 0.960 mg L−1, respectively), and concentrations of glyphosate and its metabolite aminomethylphosphonic acid (AMPA), with maximum values of 13.6 and 9.75 μg L−1, respectively. Statistically positive correlations were observed between the total metal concentrations and precipitation. No cytotoxicity (mitotic index MI) was observed in A. cepa. However, several water samples showed significant increases in micronucleus (MN) frequencies with respect to the controls. No correlations were observed between MN and the abiotic variables or precipitation. These results showed a state of deterioration in the water quality at the rural area studied in Buenos Aires province, and heavy metal contamination may contribute to the genotoxic activity. A. cepa was shown to be a useful tool for the detection of genotoxicity in water samples from areas with agricultural and livestock activities.

Keywords

Allium cepa Chromosome aberration Micronucleous Aquatic toxicology Genotoxicity Heavy metals 

Notes

Acknowledgments

The authors are grateful to Mrs. Amalia Gonzalez for the artwork of the Burgos stream basin, and Mr. Ricardo J. Piccolo for kindly providing the Allium cepa seeds for performing the genotoxicity assay.

Funding information

This study was supported financially by the Buenos Aires University, Argentina, under Projects UBACyT No. 20020130100601BA and 20020150200116BA.

References

  1. Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie, Glasgow 368 pCrossRefGoogle Scholar
  2. Aparicio VC, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93(9):1866–1873CrossRefGoogle Scholar
  3. APHA-AWWA-WPCF (2012) American Public Health Association, American Water Works Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 22nd edn. USAGoogle Scholar
  4. Arreghini S, de Cabo L, de Iorio AF (2006) Phytoremediation of two types of sediment contaminated with zn by Schoenoplectus americanus. Int J Phytoremediation 8:223–232CrossRefGoogle Scholar
  5. Arreghini S, de Cabo L, Seoane R, Tomazin N, Serafini R, de Iorio AF (2007) A methodological approach to water quality assessment in an ungauged basin (Buenos Aires, Argentina). GeoJournal 70:281–288CrossRefGoogle Scholar
  6. Arreghini S, de Cabo L, Serafini R, de Iorio AF (2017) Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus. Environ Sci Pollut Res 24(9):8098–8107CrossRefGoogle Scholar
  7. Avigliano L, Fassiano AV, Medesani DA, Ríos de Molina MC, Rodríguez EM (2014) Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bull Environ Contam Toxicol 92(6):631–635CrossRefGoogle Scholar
  8. Barbosa JS, Cabral TM, Ferreira DN, Agnez-Lima LF, Batistuzzo de Medeirosa SR (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol Environ Saf 73:320–325CrossRefGoogle Scholar
  9. Basílico G, Magdaleno A, Paz M, Moretton J, Faggi A, de Cabo L (2017) Sewage pollution: genotoxicity assessment and phytoremediation of nutrients excess with Hydrocotyle ranunculoides. Environ Monit Assess 189:182CrossRefGoogle Scholar
  10. Battaglin WA, Furlong ET, Burkhardt MR, Peter CJ (2000) Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the midwestern United States (1998). Sci Total Environ 248:123–133CrossRefGoogle Scholar
  11. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456CrossRefGoogle Scholar
  12. Cappi da Costa T, Tagliari de Brito KC, Vaz Rocha JA, Leal KA, Kolowski Rodrigues ML, Gomes Minella JP, Matsumoto ST, Vargas VMF (2012) Runoff of genotoxic compounds in river basin sediment under the influence of contaminated soils. Ecotoxicol Environ Saf 75(1):63–72CrossRefGoogle Scholar
  13. Chagas CI, Kraemer FB, Santanatoglia OJ, Paz M, Moretton J (2014) Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion. Span J Agric Res 12(4):1008–1017CrossRefGoogle Scholar
  14. de Castilhos Ghisi N, de Oliveira EC, Prioli AC (2016) Does exposure to glyphosate lead to an increase in the micronuclei frequency? A systematic and meta-analytic review. Chemosphere 145:42–54CrossRefGoogle Scholar
  15. Djukić A, Lekić B, Rajaković-Ognjanović V, Veljović D, Vulić T, Djolić M, Naunovic Z, Despotović J, Prodanović D (2016) Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J Environ Manag 168:104–110CrossRefGoogle Scholar
  16. Fatima RA, Ahmad M (2006) Genotoxicity of industrial wastewaters obtained from two different pollution sources in northern India: a comparison of three bioassays. Mutat Res 609:81–91CrossRefGoogle Scholar
  17. Fedorova AI, Kalaev VN, Prosvirina YG, Goryainova SA (2007) Mutagenic activity of heavy metals in soils of wayside slopes. Eurasian Soil Sci 40(8):893–899CrossRefGoogle Scholar
  18. Fergusson J (1990) The heavy elements. Chemistry, environmetal impact and health effects. Pergamon Press, Oxford, pp 175–182Google Scholar
  19. Fiskesjǒ G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112CrossRefGoogle Scholar
  20. Florea AM, Busselberg D (2006) Occurrence, use and potential toxic effects of metals and metal compounds. Biometals 19:419–427CrossRefGoogle Scholar
  21. Goscinny S, Unterluggauer H, Aldrian J, Hanot V, Masselter S (2012) Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS. Food Anal Methods 5:1177–1185CrossRefGoogle Scholar
  22. Grant WF (1999) Higher plant assays for the detection of chromosomal aberrations and gene mutation—a brief historical background on their use for screening and monitoring environmental chemicals. Mutat Res 426:107–112CrossRefGoogle Scholar
  23. Hoshina MM, Marin-Morales MA (2009) Micronucleus and chromosome aberrations induced in onion (Allium cepa) by a petroleum refinery effluent and by river water that receives this effluent. Ecotoxicol Environ Saf 72:2090–2095CrossRefGoogle Scholar
  24. Khan SJ, Roser DJ, Davies CM, Peters GM, Stuetz RM, Tucker R, Ashbolt NJ (2008) Chemical contaminants in feedlot wastes: concentrations, effects and attenuation. Environ Int 34:839–859CrossRefGoogle Scholar
  25. Kier LD, Kirkland DJ (2013) Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit Rev Toxicol 43(4):283–315CrossRefGoogle Scholar
  26. Kim R-Y, Yoon J-K, Kim T-S, Yang JE, Owens G, Kim K-R (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061CrossRefGoogle Scholar
  27. Kraemer FB, Chagas CI, Irurtia C, Garibaldi LA (2011) Bacterial retention in three soils of the Rolling Pampa, Argentina, under simulated rainfall. J Soil Sci Environ Manage 2(11):341–353Google Scholar
  28. Krüger M, Schledorn P, Schrödl W, Hoppe H-W, Lutz W, Shehata AA (2014) Detection of glyphosate residues in animals and humans. J Environ Anal Toxicol 4:210.  https://doi.org/10.4172/2161-0525.1000210 CrossRefGoogle Scholar
  29. Lavado RS, Porcelli CA, Alvarez R (2001) Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Tillage Res 62(1–2):55–60CrossRefGoogle Scholar
  30. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81CrossRefGoogle Scholar
  31. Mackereth F, Heron J, Talling J (1989) Water analysis: some revised methods for limnologists, 2nd edn. Freshwater Biological Association, Cumbria Scientific publication No. 36Google Scholar
  32. Magdaleno A, Mendelson A, Fabrizio de Iorio A, Rendina A, Moretton J (2008) Genotoxicity of leachates from highly polluted lowland river sediments destined for disposal in landfill. Waste Manag 28:2134–2139CrossRefGoogle Scholar
  33. Mañas F, Peralta L, Raviolo J, Ovando HG, Weyers A, Ugnia L, Cid MG, Larripa I, Gorla N (2009) Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environ Toxicol Pharmacol 28:37–41CrossRefGoogle Scholar
  34. Manassero M, Camilión C, Ronco A (2004) Análisis textural de sedimentos fluviales distales de arroyos de la pampa ondulada, Provincia de Buenos Aires, Argentina. Asociación Argentina de Sedimentología 11(2):57–68Google Scholar
  35. Manz M, Weissflog L, Kühne R, Schüürmann G (1999) Ecotoxicological hazard and risk assessment of heavy metal contents in agricultural soils of central Germany. Ecotoxicol Environ Saf 42:191–201CrossRefGoogle Scholar
  36. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826CrossRefGoogle Scholar
  37. Matsumoto ST, Mantovani MS, Malagutti MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol 29:148–158Google Scholar
  38. Mendoza RE, García IV, de Cabo L, Weigandt CF, Fabrizio de Iorio A (2015) The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina). Sci Total Environ 505:555–564CrossRefGoogle Scholar
  39. Nedelkoska TV, Low GK-C (2004) High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Anal Chim Acta 511:145–153CrossRefGoogle Scholar
  40. Peluso M, Munnia A, Bolognesi C, Parodi S (1998) 32P-Postlabeling detection of DNA adducts in mice treated with the herbicide roundup. Environ Mol Mutagen 31:55–59CrossRefGoogle Scholar
  41. Peruzzo PJ, Porta AA, Ronco AE (2008) Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156:61–66CrossRefGoogle Scholar
  42. Pignata ML, Gudiño GL, Wannaza ED, Plá RR, González CM, Carreras HA, Orellanac L (2002) Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut 120:59–68CrossRefGoogle Scholar
  43. Rank J, Nielsen MH (1998) Genotoxicity testing of wastewater sludge using the Allium cepa anaphase-telophase chromosome aberration assay. Mutat Res 418:113–119CrossRefGoogle Scholar
  44. Rank J, Jensen AG, Skov B, Pedersen LH, Jensen K (1993) Genotoxicity testing of the herbicide roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test, and Allium anaphase-telophase test. Mutat Res 300:29–36CrossRefGoogle Scholar
  45. Romero DM, Ríos de Molina MC, Juárez AB (2011) Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ Safety 74:741–747CrossRefGoogle Scholar
  46. Soracco CG, Lozano LA, Villarreal R, Melani E, Sarli GO (2018) Temporal variation of soil physical quality under conventional and no-till systems. Rev Bras Cienc Solo 42:e0170408CrossRefGoogle Scholar
  47. Sprankle P, Meggitt WF, Penner D (1975) Adsorption, mobility and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234Google Scholar
  48. Strickland J, Parsons T (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, Ottawa Bulletin No. 167Google Scholar
  49. U.S. Environmental Protection Agency (2009) National recommended water quality crieteria 4304T, http://www.epa.gov/ost/criteria/wqctable
  50. Uusi-Kämppä J, Jauhiainen L, Huuskonen A (2007) Phosphorus and nitrogen losses to surface waters from a forested feedlot for bulls in Finland. Soil Use Manag 23(1):82–91CrossRefGoogle Scholar
  51. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  52. Vargas VMF, Migliavacca SB, de Melo AC, Horn RC, Guidobono RR, Ferreira ICFS, Pestana MHD (2001) Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mutat Res 490:141–158CrossRefGoogle Scholar
  53. Zhang F, Li Y, Yang M, Li W (2012) Content of heavy metals in animal feeds and manures from farms of different scales in Northeast China. Int J Environ Res Public Health 9:2658–2668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sabrina Bollani
    • 1
  • Laura de Cabo
    • 2
  • Celio Chagas
    • 3
  • Juan Moretton
    • 1
  • Cristian Weigandt
    • 4
  • Alicia Fabrizio de Iorio
    • 4
  • Anahí Magdaleno
    • 1
  1. 1.Cátedra de Salud Pública e Higiene AmbientalUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Museo Argentino de Ciencias Naturales“Bernardino Rivadavia” – Consejo Nacional de Investigasciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Cátedra de Manejo y Conservación de SuelosUniversidad de Buenos AiresBuenos AiresArgentina
  4. 4.Cátedra de Química AnalíticaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations