Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30728–30736 | Cite as

Behavioral response and dynamics of Eisenia fetida hemocytes exposed to environmentally relevant concentration of sulfentrazone

  • Carlos Mesak
  • Raphael Pires de Campos
  • Marcela Amaral de Melo
  • Bruna de Oliveira Mendes
  • Guilherme Malafaia
Short Research and Discussion Article
  • 42 Downloads

Abstract

Although the toxicity of the pesticide sulfentrazone in some aquatic organisms is known, its effects on edaphic organisms such as earthworms remain completely unknown. Thus, we aimed at evaluating the behavior and immune response of Eisenia fetida exposed to sulfentrazone at environmentally relevant concentrations (EC). E. fetida representatives exposed to this contaminant (for 48 h) were divided in the following groups: environmental concentration (EC1x: 318 ng sulfentrazone/g of dry weight soil) and EC100x (concentration 100 times higher than in EC1x). Based on the avoidance test results, earthworms responded to this pesticide and proved the toxicity of sulfentrazone. The observed immune response induction was expressed by increased granulocytes presenting phagocytic vacuoles and agglomerations/encapsulations, mainly in animals belonging to groups EC1x and EC100x. However, the reduced frequency of plasmocytes in these animals’ hemolymphs suggested that the phagocytic immune response was not efficient to assure 100% survival. Our study is the first to report sulfentrazone toxicity in an edaphic organism, at environmental concentration.

Keywords

Environmental toxicology Earthworms Pesticides Hemolymph Annelids Ecotoxicology Behavior 

Notes

Funding information

The authors are grateful to the Brazilian National Council for Research (CNPq) (Brazilian research agency) (Proc. No 467801/2014-2) and Instituto Federal Goiano for the financial support (Proc. No 23218.000286/2017-21). Moreover, the authors are grateful to the CNPq and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG, Brazil) for granting a scholarship to the student who developed this study.

References

  1. Abd-Allah SM (2012) Humoral defense response of earthworm Lumbricus terrestris against herbicide; nominee. J Plant Prot and Path 3(9):881–895Google Scholar
  2. Banerjee BD (1999) The influence of various factors on immune toxicity assessment of pesticide chemicals. Toxicol Lett 107(1–3):21–31CrossRefGoogle Scholar
  3. Bianchi J, Cabral-de-Mello DC, Marin-Morales MA (2015) Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicol Environ Saf 120:174–183CrossRefGoogle Scholar
  4. Bianchi J, Fernandes TC, Marin-Morales MA (2016) Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere 144:475–483CrossRefGoogle Scholar
  5. Carneiro ME, Daemon E (1996) Caracterização dos tipos celulares presents na hemolinfa de larvas e ninfas de Rhipicephalus sanguineus (Latreille) (Ixodoidea, Isocidae) em diferentes estados nutricionais. Rev Bras Zool 13(3):609–620CrossRefGoogle Scholar
  6. Castro VLSS, Destefani CR, Diniz C, Poli P (2007) Evaluation of neurodevelopmental effects on rats exposed prenatally to sulfentrazone. NeuroToxicology 28(6):1249–1259CrossRefGoogle Scholar
  7. Chen J, Saleem M, Wang C, Liang W, Zhang Q (2018) Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Sci Rep 8:2967CrossRefGoogle Scholar
  8. Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light dependent and light-independent herbicide mechanisms of action. Pest Biochem Phys 101:182–190CrossRefGoogle Scholar
  9. Domínguez J, Velando A, Ferreiro A (2005) Are Eisenia fetida (Savigny, 1826) and Eisenia andrei (Bouché, 1972) (Oligochaeta, Lumbricidae) different biological species? Pedobiologia 49(1):81–87CrossRefGoogle Scholar
  10. Firlej A, Girard PA, Brehe’lin M, Coderre D, Boivin G (2012) Immune response of Harmonia axyridis (Coleoptera: Coccinellidae) supports the enemy release hypothesis in North America. Ann Entomol Soc Am 105(3282338):328–338CrossRefGoogle Scholar
  11. Fournier M, Cyr D, Blakley B, Boermans H, Brosseau P (2000) Phagocytosis as a biomarker of immunotoxicity in wildlife species exposed to environmental xenobiotics. Am Zool 40(3):412–420Google Scholar
  12. Fründ HC, Butt K, Capowiez Y, Eisenhauer N, Emmerling C, Emst G, Potthoff M, Schädler M, Schrader S (2010) Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia 53(2):119–125CrossRefGoogle Scholar
  13. Garcia M, Römbke J, Brito MT, Scheffczyk A (2008) Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions. Environ Pollut 153:450–456CrossRefGoogle Scholar
  14. Giglio A, Battistella S, Talarico FF, Brandmayr TZ, Giulianini PG (2008) Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae): cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron 39:5522558CrossRefGoogle Scholar
  15. Giulianini PG, Bertolo F, Battistella S, Amirante GA (2003) Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue Cell 35(4):243–251CrossRefGoogle Scholar
  16. Gupta AP (1979) Insect hemocytes development, forms, functions and techniques. Cambridge University Press, New YorkCrossRefGoogle Scholar
  17. Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments. J Soils Sediments 1(1):15–20CrossRefGoogle Scholar
  18. ISO 17512-1:2008. Soil quality -- Avoidance test for determining the quality of soils and effects of chemicals on behaviour -- Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). Available in: https://www.iso.org/standard/38402.html. Access on: 03 august, 2018
  19. Jones JC (1962) Current concepts concerning insect hemocytes. Rev Am Zool 2:2092246Google Scholar
  20. Kenakin T (2012) Pharmacology in drug discovery: understanding drug response. In: Academic press: USAGoogle Scholar
  21. Kooch Y, Jalilvand H (2008) Earthworms as ecosystem engineers and the most important detritivores in forest soils. Pak J Biol Sci 11(6):819–825CrossRefGoogle Scholar
  22. Kwon H, Bang K, Cho S (2014) Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PlosOne 9(8):e103620CrossRefGoogle Scholar
  23. Manachini B, Arizza V, Parrinello D, Parrinello N (2011) Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. J Invertebr Pathol 106:3602365CrossRefGoogle Scholar
  24. Natal-da-Luz T, Domene X, Scheffczyk A, Sousa JP (2009) Earthworm avoidance tests. In: Moser H, Römbke J (eds) Ecotoxicological characterization of waste. Springer, New York, NYGoogle Scholar
  25. Pandey JP, Tiwari RK (2012) An overview of insect hemocyte science and its future application in applied and biomedical fields. Am J Biochem Mole Biol 2:822105Google Scholar
  26. Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. a review. Agron Sustain Dev 34:199–228CrossRefGoogle Scholar
  27. Qi S, Wang D, Zhu L, Teng M, Wang C, Xue X, Wu L (2018) Effects of a novel neonicotinoid insecticide cycloxaprid on earthworm, Eisenia fetida. Environ Sci Pollut Res Int 25(14):14138–14147CrossRefGoogle Scholar
  28. Rodrigues RF, Lacerda PM, Araújo FG, Malafaia G, Rodrigues ASL (2012) Densidade populacional de Eisenia fetida (Savigny, 1826) em processo de vermicompostagem de substratos a base de borra de café e de esterco bovino. Enciclopédia Biosfera 8(14):294–301Google Scholar
  29. Roubalová R, Procházková P, Dvorak J, Skanta F, Bilej M (2015) The role of earthworm defense mechanisms in ecotoxicity studies. Invertebr Surviv J 12:203–213Google Scholar
  30. Seitz K (1972) Herzwandung, Bildung und Differenzierung der Haemocyten. Zool Jb Anat 89:351–384Google Scholar
  31. Shi Z, Tang Z, Wang C (2017) A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environ Sci Pollut Res Int 24:13284–13294CrossRefGoogle Scholar
  32. Sousa AP, Andréa MM (2011) Earthworm (Eisenia Andrei) avoidance of soils treated with cypermethrin. Sensors 11(12):11056–11063CrossRefGoogle Scholar
  33. Thorngren JL, Harwood AD, Murphy TM, Hartz KEH, Fung CY, Lydy MJ (2017) Fate and risk of atrazine and sulfentrazone to nontarget species at an agriculture site. Environ Toxicol Chem 36(5):1301–1310CrossRefGoogle Scholar
  34. United States Environmental Protection Agency (EPA). Pesticide fact sheet (1997). Disponível em: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-129081_27-Feb-97.pdf. Acesso em 01 maio 2018
  35. United States Environmental Protection Agency (EPA). Sulfentrazone registration: review. EPA-HQ-OPP-2009-0624. Washington, DC, 2009Google Scholar
  36. Wen HF, Li YW, Xiang L, Zhao HM, Chen L, Cai QY, Li H, Mo CH, Zhou DM, Wong MH (2017) Toxicological effects of microcystin-LR on earthworm (Eisenia fetida) in soil. Biol Fertil Scoils 53:849–860CrossRefGoogle Scholar
  37. Williams MJ (2007) Drosophila hemopoiesis and cellular immunity. J Immunol 178:471124716Google Scholar
  38. Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532e1537Google Scholar
  39. Zhang Y, Zhang L, Feng L, Mao L, Jiang H (2017) Oxidative stress of imidaclothiz on earthworm Eisenia fetida. Comp Biochem Physiol C Toxicol Pharmacol 191:1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carlos Mesak
    • 1
  • Raphael Pires de Campos
    • 1
  • Marcela Amaral de Melo
    • 1
  • Bruna de Oliveira Mendes
    • 1
  • Guilherme Malafaia
    • 1
    • 2
  1. 1.Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural ResourcesGoiano Federal Institute – Urutaí CampusUrutaíBrazil
  2. 2.Laboratório de Pesquisas BiológicasInstituto Federal Goiano – Campus UrutaíUrutaíBrazil

Personalised recommendations