Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31718–31726 | Cite as

Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae)

  • Kyvia F. Alves
  • Flávio H. Caetano
  • Israel J. Pereira Garcia
  • Hérica L. Santos
  • Denise B. Silva
  • João M. Siqueira
  • Aparecida S. Tanaka
  • Stênio N. Alves
Research Article

Abstract

The control of mosquitoes by means of chemical insecticides has been a problem, mainly due to the possibility of resistance developed by insects to xenobiotics. For this reason, demand for botanical insecticides has increased. In this sense, the present work aims to verify the susceptibility and morphological and biochemical alterations of Culex quinquefasciatus larvae after exposure to essential oil (EO) of leaves of Baccharis dracunculifolia. To observe the larvicidal action, larvae were exposed to EO at concentrations of 25, 50, 100, and 200 mg/L, until their emergence to adults. The control group was exposed to deionized water and dimethyl sulfoxide. Morphological analyses were also carried out using hematoxylin and eosin, mercury bromophenol blue, Nile blue, and periodic acid Schiff. Biochemical analyses of total glucose, triacylglyceride (TAG), protein, and acetylcholinesterase levels were performed. The phytochemical analysis of the EO showed (E)-nerolidol as the major compound (30.62%). Larvae susceptibility results showed a LC50 of 34.45 mg/L for EO. Morphological analysis showed that there were histological changes in midgut. For biochemical analyses, the glucose level in the larvae exposed to EO for 24 h decreased significantly, unlike the TAG levels, which increased. The total protein level of the larvae also increased after exposure for 24 h, and acetylcholinesterase levels decreased significantly. Taking all our data into account, we can conclude that EO causes destabilization in larva, leading to histological changes, metabolic deregulation and, consequently, their death.

Keywords

Mosquito Midgut Digestive cells Biochemistry analyzed Acetylcholinesterase 

Notes

Acknowledgments

We thank Universidade Federal de São João Del-Rei (UFSJ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their fellowships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, IllinoisGoogle Scholar
  2. Alves SN, Serrão JE, Melo AL (2010) Alterations in the fat body and midgut of Culex quinquefasciatus larvae following exposure to different insecticides. Micron 41:592–597.  https://doi.org/10.1016/j.micron.2010.04.004 CrossRefGoogle Scholar
  3. Anthony N, Rocheleau T, Mocelin G, Lee H-J, French-Constant R (1995) Cloning, sequencing and functional expression of an acetylcholinesterase gene from yellow fever mosquito Aedes aegypti. FEBS Lett 368:461–465.  https://doi.org/10.1016/0014-5793(95)00711-H CrossRefGoogle Scholar
  4. Arruda W, Oliveira GMC, Silva IG (2003) Toxicidade do extrato etanólico de Magonia pubescens sobre larvas de Aedes aegypti. Rev Soc Bras Med Trop 36:17–25.  https://doi.org/10.1590/S0037-86822003000100004 CrossRefGoogle Scholar
  5. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Khaled JM (2017) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 116:1175–1188.  https://doi.org/10.1007/s00436-017-5395-0 CrossRefGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254CrossRefGoogle Scholar
  7. Brinzer R, Henderson L, Marchiondo A, Wood D, Davies A, Dow J (2015) Metabolomic profiling of permethrin-treated Drosophila melanogaster identifies a role for tryptophan catabolism in insecticide survival. Insect Biochem Mol Biol 67:74–86.  https://doi.org/10.1016/j.ibmb.2015.09.009 CrossRefGoogle Scholar
  8. Búfalo MC, Figueiredo AS, De Sousa JP, Candeias JM, Bastos JK, Sforcin JM (2009) Anti-poliovirus activity of Baccharis dracunculifolia and propolis by cell viability determination and real-time PCR. J Appl Microbiol 107:1669–1680.  https://doi.org/10.1111/j.1365-2672.2009.04354.x CrossRefGoogle Scholar
  9. Burch HB, Lowry OH, Meinhardt L, Max P, Chyu K (1970) Effect of fructose, dihydroxyacetone, glycerol, and glucose on metabolites and related compounds in liver and kidney. J Biol Chem 245:2092–2102Google Scholar
  10. Campolo O, Romeo FV, Algeri GM, Laudani F, Malacrinò A, Timpanaro N, Palmeri V (2016) Larvicidal effects of four citrus peel essential oils against the arbovirus vector (Diptera: Culicidae). J Econ Entomol 109(1):360–365.  https://doi.org/10.1093/jee/tov270 CrossRefGoogle Scholar
  11. Candy DJ (1985) Intermediary metabolism. In: Kerkurt GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol v. 10. Pergamon Press, Oxford, pp 1–41Google Scholar
  12. Cavalcante VM, Cruz-Landim C (1999) Types of cells present in the midgut of the insects: a review. Naturalia 24:19–40Google Scholar
  13. Chan WK, Tan LTH, Chan KG, Lee LH, Goh BH (2016) Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21:529.  https://doi.org/10.3390/molecules21050529 CrossRefGoogle Scholar
  14. Chapman RF, Simpson SJ, Douglas AE (2012) The insects: structure and function, 5th edn. University Press, CambridgeCrossRefGoogle Scholar
  15. Cobos MI, Rodriguez JL, Oliva MM, Demo M, Faillaci SM, Zygadlo JA (2001) Composition and antimicrobial activity of the essential oil of Baccharis notosergila. Planta Med 67:84–86.  https://doi.org/10.1055/s-2001-10633 CrossRefGoogle Scholar
  16. De Barros MP, Sousa JPB, Bastos JK, De Andrade SF (2007) Effect of Brazilian green propolis on experimental gastric ulcers in rats. J Ethnopharmacol 110:567–571.  https://doi.org/10.1016/j.jep.2006.10.022 CrossRefGoogle Scholar
  17. Djogbénou L, Akogbéto M, Chandre F (2008) Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop 107:272–274.  https://doi.org/10.1016/j.actatropica.2008.06.004 CrossRefGoogle Scholar
  18. Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576.  https://doi.org/10.1007/s00436-009-1593-8 CrossRefGoogle Scholar
  19. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  20. Fernandes JN, Moise IK, Maranto GL, Beier JC (2018) Revamping mosquito-borne disease control to tackle future threats. Trends Parasitol 34:359–368.  https://doi.org/10.1016/j.pt.2018.01.005 CrossRefGoogle Scholar
  21. Ferronatto R, Marchesan ED, Bednarski F, Alencar SM, Onofre SB (2006) Atividade antioxidante dos óleos essenciais produzidos por Baccharis dracunculifolia D.C. e Baccharis uncinella D.C. (Asteraceae). Arq Ciências Saúde UNIPAR 10:67–70.  https://doi.org/10.25110/arqsaude.v10i2.2006.267 CrossRefGoogle Scholar
  22. Forattini OP (2002) Culicidologia Médica, vol 2. Editora da Universidade de São Paulo, São PauloGoogle Scholar
  23. Gade S, Rajamanikyam M, Vadlapudi V, Nukala KM, Aluvala R, Giddigari C, Karanam NJ, Barua NC, Pandey R, Upadhyayula VSV, Sripadi P, Amanchy R, Upadhyayula SM (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta 1861:541–550.  https://doi.org/10.1016/j.bbagen.2016.11.044 CrossRefGoogle Scholar
  24. Gerberg EJ (1979) Manual for mosquito rearing and experimental techniques (bulletin No 5). American Mosquito Control Association, Selma, pp 7–26Google Scholar
  25. Govindarajan M, Rajeswary M, Benelli G (2016) Chemical composition, toxicity and effects on non-target organisms of Pinus kesiya essential oil: an eco-friendly larvicide against mosquito vectors. Ecotoxicol Environ Saf 129:85–90.  https://doi.org/10.1016/j.ecoenv.2016.03.007 CrossRefGoogle Scholar
  26. Hematpoor A, Liew YS, Chong WL, Azirun MS, Lee VS, Awang K (2016) Inhibition and larvicidal activity of phenylpropanoids from Piper sarmentosum on acetylcholinesterase against mosquito vectors and theis binding mode of interaction. PLoS One 6:1–27.  https://doi.org/10.1371/journal.pone.0155265 CrossRefGoogle Scholar
  27. Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145.  https://doi.org/10.1016/j.tplants.2013.11.005 CrossRefGoogle Scholar
  28. Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M (2018) Molecular targets for components of essential oils in the insect nervous system—a review. Molecules 2018(23):34.  https://doi.org/10.3390/molecules23010034 CrossRefGoogle Scholar
  29. Karchesy JJ, Kelsey RG, González-Hernández MP (2018) Yellow-cedar, Callitropsis (Chamaecyparis) nootkatensis, secondary metabolites, biological activities, and chemical ecology. J Chem Ecol 44:510–524.  https://doi.org/10.1007/s10886-018-0956-y CrossRefGoogle Scholar
  30. Komalamisra NT, Rongsriyam Y, Apiwathnasorn C (2005) Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 6:1412–1422Google Scholar
  31. Kostić M, Popović Z, Brkić D, Milanović S, Sivcev I, Stanković S (2008) Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae). Bioresour Technol 99:7897–7901.  https://doi.org/10.1016/j.biortech.2008.02.010 CrossRefGoogle Scholar
  32. Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742.  https://doi.org/10.1248/cpb.51.740 CrossRefGoogle Scholar
  33. Masetti A (2016) The potential use of essential oils against mosquito larvae: a short review. Bull Insectology 69:307–310Google Scholar
  34. Megraw RE, Dunn DE, Biggs HG (1979) Manual and continuous flow colorimetry of triacylglycerols by a fully enzymic method. Clin Chem 25:273–278Google Scholar
  35. Melo AR, Garcia IJP, Serrão JE, Santos HL, Lima LARS, Alves SN (2018) Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicol Environ Saf 154:1–5.  https://doi.org/10.1016/j.ecoenv.2018.02.009 CrossRefGoogle Scholar
  36. Midorikawa K, Banskota AH, Tezuka Y, Nagaoka T, Matsushige K, Message D, Huertas AA, Kadota S (2001) Liquid chromatography–mass spectrometry analysis of propolis. Phytochem Anal 12:366–373.  https://doi.org/10.1002/pca.605 CrossRefGoogle Scholar
  37. Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agri Food Chem 45:677–679.  https://doi.org/10.1021/jf960398b CrossRefGoogle Scholar
  38. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373.  https://doi.org/10.1007/s00436-015-4898-9 CrossRefGoogle Scholar
  39. Park YK, Koo MH, Abreu JAS, Ikegaki M, Cury JA, Rosalen PL (1998) Antimicrobial activity of propolis on oral microorganisms. Curr Microbiol 36:24–28.  https://doi.org/10.1007/s0028499002 CrossRefGoogle Scholar
  40. Pearse AGE (1968) Histochemistry: theoretical and applied, vol I, third edn. Churchill, LondonGoogle Scholar
  41. Pereira CA, da Costa AC, Machado AK, Beltrame Júnior M, Zöllner MS, Junqueira JC, Jorge AO (2011) Enzymatic activity, sensitivity to antifungal drugs and Baccharis dracunculifolia essential oil by Candida strains isolated from the oral cavities of breastfeeding infants and in their mothers’ mouths and nipples. Mycopathologia 171:103–109.  https://doi.org/10.1007/s11046-010-9353-y CrossRefGoogle Scholar
  42. Pizarro APB, Oliveira Filho AM, Parente JP, Melo MV, Dos Santos CE (1999) O aproveitamento do resíduo da indústria do Sisal no controle de larvas de mosquito. Rev Soc Bras Med Trop 32:23–29.  https://doi.org/10.1590/S0037-86821999000100005 CrossRefGoogle Scholar
  43. Rajashekar Y, Raghavendra A, Bakthavatsalam N (2014) Acetylcholinesterase inhibition by biofumigant (coumaran) from leaves of Lantana camara in stored grains and household insect pests. Biomed Res Int 187019. doi: https://doi.org/10.1155/2014/187019 CrossRefGoogle Scholar
  44. Ramaiah KD, Das PK, Appavoo NC, Ramu K, Augustin DJ, Vijay Kumar KN, Chandrakala AV (2000) A programme to eliminate lymphatic filariasis in Tamil Nadu state, India: compliance with annual single-dose DEC mass treatment and some related operational aspects. Tropical Med Int Health 5:842–848.  https://doi.org/10.1046/j.1365-3156.2000.00659.x CrossRefGoogle Scholar
  45. Razak TA, Sivasubramaniam P (2007) Effect of three botanical oils on carbohydrate content in Cheilomenes sexmaculata Fabricus and Chrysoperla carnea Stephens. Asian J Biochem 2:124–129.  https://doi.org/10.3923/ajb.2007.124.129 CrossRefGoogle Scholar
  46. Ribeiro-Neto JA, Pinto MEA, Ferreira VV, Tibúrcio JD, Varotti FP, Azevedo DO, Siqueira-Filho EP, Serrão JE, Lima LAS, Alves SN (2017) Larvicidal activity of vegetable oils and esterified compounds against Culex quinquefasciatus (Diptera: Culicidae). Ecotoxicol Environ Saf 143:57–61.  https://doi.org/10.1016/j.ecoenv.2017.05.004 CrossRefGoogle Scholar
  47. Santos RF, Isobe MTC, Lalla JG, Haber LL, Marques MOM, Ming LC (2012) Composição química e produtividade dos principais components do oleo essencial de Baccharis dracunculifolia DC. em função da adubação orgânica. Rev Bras Pl Med 14:224–234.  https://doi.org/10.1590/S1516-05722012000500017 CrossRefGoogle Scholar
  48. Scott ML, Mcallister JC (2012) Comparison of biochemical and molecular tests for detecting insecticide resistance due to insensitive acetylcholinesterase in Culex quinquefasciatus. J Am Mosq Control Assoc 28:323–326.  https://doi.org/10.2987/2F12-6280R.1
  49. Seo SM, Jung CS, Kang J, Lee HR, Kim SW, Hyun J, Park IK (2015) Larvicidal and acetylcholinesterase inhibitory activities of Apiaceae plant essential oils and their constituents against Aedes albopictus and formulation development. J Agric Food Chem 63:9977–9986.  https://doi.org/10.1021/acs.jafc.5b03586 CrossRefGoogle Scholar
  50. Sforcin JM, Conti BJ (2012) Can propolis affect immunity? In: Farooqui T, Farooqui AA (Eds), Beneficial effects of propolis on human health and chronic diseases, Nova Science Publishers, New York, vol. 1, pp. 111–121Google Scholar
  51. Sharma P, Mohan L, Dua KK, Srivastava CN (2011) Status of carbohydrate, protein and lipid profile in the mosquito larvae treated with certain phytoextracts. Asian Pac J Trop Med 4:301–304.  https://doi.org/10.1016/S1995-7645(11)60090-4 CrossRefGoogle Scholar
  52. Silva DB, Pott A, Oliveira DCR (2010) Analyses of the headspace volatile constituents of aerial parts (leaves and stems), flowers and fruits of Bidens guardneri Bak. and Bidens sulphurea (Cav.) Sch. Bip. using solid-phase microextraction. J Essent Oil Res 22:560–563.  https://doi.org/10.1080/10412905.2010.9700400 CrossRefGoogle Scholar
  53. Sousa JPB, Jorge RF, Leite MF, Furtado NAJC, Bastos JK, Da Silva Filho AA, Queiroga CL, Magalhães PM, Soares AEE (2009) Seasonal variation of the (E)-nerolidol and other volatile compounds within ten different cultivated populations of Baccharis dracunculifolia D.C. (Asteraceae). J Essent Oil Res 21:308–314.  https://doi.org/10.1080/10412905.2009.9700179 CrossRefGoogle Scholar
  54. Stefanini M, Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174CrossRefGoogle Scholar
  55. Subra R (1981) Biology and control of Culex quinquefasciatus say, 1823 (Diptera - Culicidae) with special reference to Africa. Int J Trop Insect Sci 1:319–318.  https://doi.org/10.1017/S1742758400000618 CrossRefGoogle Scholar
  56. Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161CrossRefGoogle Scholar
  57. Vishwanath VA (2016) Fatty acid beta-oxidation disorders: a brief review. Ann Neurosci 23:51–55.  https://doi.org/10.1159/2F000443556
  58. WHO (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  59. WHO (2013) Lymphatic Filariasis: managing morbidity and preventing disability. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  60. Younoussa L, Nukenine EN, Esimone CO (2016) Toxicity of Boswellia dalzielii (Burseraceae) leaf fractions against immature stages of Anopheles gambiae (Giles) and Culex quinquefasciatus (say) (Diptera: Culicidae). Int J Insect Sci 8:23–31.  https://doi.org/10.4137/IJIS.S37188 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kyvia F. Alves
    • 1
  • Flávio H. Caetano
    • 2
  • Israel J. Pereira Garcia
    • 1
  • Hérica L. Santos
    • 1
  • Denise B. Silva
    • 3
  • João M. Siqueira
    • 1
  • Aparecida S. Tanaka
    • 4
  • Stênio N. Alves
    • 1
  1. 1.Campus Centro-Oeste Dona LinduUniversidade Federal de São João del ReiDivinópolisBrazil
  2. 2.Departamento de Biologia, Universidade Estadual Paulista Júlio de Mesquita FilhoInstituto de Biociências de Rio ClaroRio ClaroBrazil
  3. 3.Centro de Ciências Biológicas e da Saúde, Universidade Federal do Mato Grosso do SulCidade Universitária – PioneirosCampo GrandeBrazil
  4. 4.Departamento de BioquímicaUnivesridade Federal de São PauloSão PauloBrazil

Personalised recommendations