Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31705–31717 | Cite as

Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution

  • Xiang Zheng
  • Jinlin Wang
  • Xiaolong Xue
  • Wanxia Liu
  • Yadong Kong
  • Rong Cheng
  • Donghai Yuan
Research Article
  • 206 Downloads

Abstract

In this research, the adsorptive removal of diclofenac sodium, one of the representative pharmaceuticals and personal care products, from aqueous solution using Fe3O4@MOF-100(Fe) magnetic microspheres was studied for the first time. The Fe3O4@MOF-100(Fe) microspheres exhibit strong magnetism and stability, which were observed as a core-shell structure. The maximum adsorption capacity of Fe3O4@MOF-100(Fe) for diclofenac sodium can reach 377.36 mg L−1, which was higher than most of the adsorbents reported. The adsorption kinetics follows the pseudo-second-order kinetic equation. And the adsorption equilibrium of DCF can be described with Langmuir isotherm. In the cycle experiment, Fe3O4@MOF-100(Fe) material performed high adsorption efficiency for low-concentration diclofenac sodium solution, and the removal rate can still reach 80% after 5 cycles of adsorption without desorption. The mechanisms including electrostatic interaction, H-bond interaction, and π-π interaction that coexisted in the adsorption processes would be of benefit to enhance the adsorption capacity. The Fe3O4@MOF-100(Fe) magnetic microspheres offer exciting opportunities for further application.

Keywords

MOF-100(Fe) Adsorption Fe3O4 Core-shell structure Diclofenac sodium 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51778618, 51478460, 51578037) and the Guangxi Province Technology Major Project (AA17202032), which are greatly acknowledged.

Supplementary material

11356_2018_3134_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1305 kb)

References

  1. Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2, nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20(4):1656–1664.  https://doi.org/10.1016/j.jiec.2013.08.013 CrossRefGoogle Scholar
  2. Antunes M, Esteves VI, Guégan R, Crespo JS, Fernandes AN, Giovanela M (2012) Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J 192(2):114–121.  https://doi.org/10.1016/j.cej.2012.03.062 CrossRefGoogle Scholar
  3. Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212(47):310–317.  https://doi.org/10.1016/j.cej.2012.09.099 CrossRefGoogle Scholar
  4. Bai ZY, Yang Q, Wang JL (2016) Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int J Environ Sci Technol 13(2):483–492.  https://doi.org/10.1007/s13762-015-0881-3 CrossRefGoogle Scholar
  5. Barbosa M, Moreira NFF, Ribeiro AR, Pereira MFR, Silva AMT (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res 94:257–279.  https://doi.org/10.1016/j.watres.2016.02.047 CrossRefGoogle Scholar
  6. Bhadra BN, Ahmed I, Kim S, Jhung SH (2016a) Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem Eng J 314:50–58.  https://doi.org/10.1016/j.cej.2016.12.127 CrossRefGoogle Scholar
  7. Bhadra BN, Seo PW, Jhung SH (2016b) Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem Eng J 301:27–34.  https://doi.org/10.1016/j.cej.2016.04.143 CrossRefGoogle Scholar
  8. Boxall A, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229.  https://doi.org/10.1289/ehp.1104477 CrossRefGoogle Scholar
  9. Boyd GR, Reemtsma H, Grimm DA, Mitra S (2003) Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci Total Environ 311(1–3):135–149.  https://doi.org/10.1016/S0048-9697(03)00138-4 CrossRefGoogle Scholar
  10. Bozorgi M, Abbasizadeh S, Samani F, Mousavi S E (2018) Performance of synthesized cast and electrospun PVA/chitosan/ZnO-NH2, nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater. Environ Sci Pollut Res 1–16.  https://doi.org/10.1007/s11356-018-1936-z CrossRefGoogle Scholar
  11. Bu QW, Wang B, Huang J, Deng SB, Yu G (2013) Pharmaceuticals and personal care products in the aquatic environment in China: a review. J Hazard Mater 262(22):189–211.  https://doi.org/10.1016/j.jhazmat.2013.08.040 CrossRefGoogle Scholar
  12. Caldas SS, Rombaldi C, Jl DOA, Marube LC, Primel EG (2015) Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 146(2):676–688.  https://doi.org/10.1016/j.talanta.2015.06.047 CrossRefGoogle Scholar
  13. Campbell MG, Dincă M (2017) Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17(5):1108.  https://doi.org/10.3390/s17051108 CrossRefGoogle Scholar
  14. Canioni R, Rochmarchal C, Sécheresse F, Horcajada P, Serre C, Hardidan M, Férey G, Grenèche J, Lefebvre F, Chang J, Hwang Y, Lebedev O, Turner S, Tendeloo GV (2011) Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J Mater Chem 21(4):1226–1233.  https://doi.org/10.1039/c0jm02381g CrossRefGoogle Scholar
  15. Chen H, Gao B, Li H (2014) Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene. J Environ Chem Eng 2(1):310–315.  https://doi.org/10.1016/j.jece.2013.12.021 CrossRefGoogle Scholar
  16. Cuerdacorrea EM, Domínguezvargas JR, Olivaresmarín FJ, Heredia JB (2010) On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater 177(1–3):1046–1053.  https://doi.org/10.1016/j.jhazmat.2010.01.026 CrossRefGoogle Scholar
  17. Danina K, Aleksandra D, Maja M, Andelija M, Milan K, Danica BB, Vera D, Jela M (2011) Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloids Surf B Biointerfaces 83(1):165–172.  https://doi.org/10.1016/j.colsurfb.2010.11.024 CrossRefGoogle Scholar
  18. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938.  https://doi.org/10.2307/3434573 CrossRefGoogle Scholar
  19. Elwakeel KZ (2009) Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. J Hazard Mater 167(1):383–392.  https://doi.org/10.1016/j.jhazmat.2009.01.051 CrossRefGoogle Scholar
  20. Elwakeel KZ, El-Bindary AA, El-Sonbati A et al (2016) Adsorption of toxic acidic dye from aqueous solution onto diethylenetriamine functionalized magnetic glycidyl methacrylate-N,N’-methylenebisacrylamide. RSC Adv 6(4):3350–3361.  https://doi.org/10.1039/c5ra24035b CrossRefGoogle Scholar
  21. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214.  https://doi.org/10.1039/b618320b CrossRefGoogle Scholar
  22. Gao X, Cui R, Zhang M, Liu Z (2017) Metal-organic framework nanosheets that exhibit pH-controlled drug release. Mater Lett 197:217–220.  https://doi.org/10.1016/j.matlet.2017.02.082 CrossRefGoogle Scholar
  23. Giovine R, Volkringer C, Trébosc J, Amoureux JP, Loiseau T, Lafon O, Pourpoint F (2017) NMR crystallography to probe the breathing effect of the MIL-53(Al) metal–organic framework using solid-state NMR measurements of 13C–27Al distances. Acta Crystallogr 73(3):176–183.  https://doi.org/10.1107/S2053229616017915 CrossRefGoogle Scholar
  24. Hasan Z, Jhung SH (2015) Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J Hazard Mater 283:329–339.  https://doi.org/10.1016/j.jhazmat.2014.09.046 CrossRefGoogle Scholar
  25. Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Mater 209–210(4):151–157.  https://doi.org/10.1016/j.jhazmat.2012.01.005 CrossRefGoogle Scholar
  26. Hasan Z, Khan NA, Jhung SH (2016) Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem Eng J 284:1406–1413.  https://doi.org/10.1016/j.cej.2015.08.087 CrossRefGoogle Scholar
  27. Horcajada P, Surblé S, Serre C, Hong DY, Seo YK, Chang JS, Grenèche JM, Margiolaki I, Férey G (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 27(27):2820–2822.  https://doi.org/10.1039/b704325b CrossRefGoogle Scholar
  28. Huo SH, Yan XP (2012) Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem 22(15):7449–7455.  https://doi.org/10.1039/c2jm16513a CrossRefGoogle Scholar
  29. Jauris IM, Matos CF, Saucier C, Lima EC, Zarbin AJ, Fagan SB, Machado F, Zanella I (2016) Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys 18(3):1526–1536.  https://doi.org/10.1039/c5cp05940b CrossRefGoogle Scholar
  30. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245(2):444–456.  https://doi.org/10.1016/j.jhazmat.2012.11.011 CrossRefGoogle Scholar
  31. Lee J, Farha O, Roberts J, Scheidt K, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459.  https://doi.org/10.1039/b807080f CrossRefGoogle Scholar
  32. Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177(1–3):876–880.  https://doi.org/10.1016/j.jhazmat.2009.12.114 CrossRefGoogle Scholar
  33. Liang R, Luo S, Jing F, Shen L, Qin N, Wu L (2015) A simple strategy for fabrication of Pd@MOF-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl Catal B Environ 176–177(3):240–248.  https://doi.org/10.1016/j.apcatb.2015.04.009 CrossRefGoogle Scholar
  34. Lin YL, Lee CH (2014) Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes. Ind Eng Chem Res 53(16):6798–6806.  https://doi.org/10.1021/ie500114r CrossRefGoogle Scholar
  35. Lin J, Zhan Y, Zhu Z (2011) Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids Surf A Physicochem Eng Asp 384(1–3):9–16. doi:  https://doi.org/10.1016/j.colsurfa.2011.02.044 CrossRefGoogle Scholar
  36. Lin KYA, Yang H, Lee WD (2015) Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB). RSC Adv 5(99):81330–81340.  https://doi.org/10.1039/c5ra08189k CrossRefGoogle Scholar
  37. Liu JL, Wong MH (2013) Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int 59(3):208–224.  https://doi.org/10.1016/j.envint.2013.06.012 CrossRefGoogle Scholar
  38. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2015) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43(16):6011–6061.  https://doi.org/10.1039/c4cs00094c CrossRefGoogle Scholar
  39. Long JR, Yaghi OM (2009) The pervasive chemistry of metal-organic frameworks. Chem Soc Rev 38(5):1213–1214.  https://doi.org/10.1039/b903811f CrossRefGoogle Scholar
  40. Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44(5):1489–1497.  https://doi.org/10.1016/j.watres.2009.10.042 CrossRefGoogle Scholar
  41. Lv H, Zhao H, Cao T, Qian L, Wang Y, Zhao G (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89.  https://doi.org/10.1016/j.molcata.2015.02.007 CrossRefGoogle Scholar
  42. Mehran B, Saeed A, Faranak S, Seyyed EM (2018) Performance ofsynthesized cast and electrospun PVA/chitosan/ZnO-NH , nano-adsorbents in single and simultaneous adsorption of cadmium and nickel ions from wastewater. Environ Sci Pollut Res 17457–17472.  https://doi.org/10.1007/s11356-018-1936-z CrossRefGoogle Scholar
  43. Nam SW, Choi DJ, Kim SK, Her N, Zoh KD (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270(3):144–152.  https://doi.org/10.1016/j.jhazmat.2014.01.037 CrossRefGoogle Scholar
  44. Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44(16):6024–6035.  https://doi.org/10.1021/es100779n CrossRefGoogle Scholar
  45. Rizzo L, Fiorentino A, Grassi M, Attanasio D, Guida M (2015) Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: effect on a mixture of pharmaceuticals and toxicity. J Environ Chem Eng 3(1):122–128.  https://doi.org/10.1016/j.jece.2014.11.011 CrossRefGoogle Scholar
  46. Sathishkumar P, Arulkumar M, Veeramuthu A, Yusoff ARM, Murugesan K, Palvannan T, Salam Z, Ani FN, Hadibarata T (2015) Modified phyto-waste Terminalia catappa fruit shell: a reusable adsorbent for the removal of micropollutant diclofenac. RSC Adv 5(39):30950–30962.  https://doi.org/10.1039/c4ra11786g CrossRefGoogle Scholar
  47. Sharmin E, Zafar F (2016) Introductory chapter: metal organic frameworks (MOFs)Google Scholar
  48. Shekhah O, Liu J, Fischer RA, Ch W (2011) MOF thin films: existing and future applications. Chem Soc Rev 40(2):1081–1106.  https://doi.org/10.1039/c0cs00147c CrossRefGoogle Scholar
  49. Sophia AC, Lima EC (2017) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1.  https://doi.org/10.1016/j.ecoenv.2017.12.026 CrossRefGoogle Scholar
  50. Suriyanon N, Punyapalakul P, Ngamcharussrivichai C (2013) Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chem Eng J 214(1):208–218.  https://doi.org/10.1016/j.cej.2012.10.052 CrossRefGoogle Scholar
  51. Talebi M, Abbasizadeh S, Keshtkar AR (2017) Evaluation of single and simultaneous thorium and uranium sorption from water systems by an electrospun PVA/SA/PEO/HZSM5 nanofiber. Process Safety & Environmental Protection 109:340–356.  https://doi.org/10.1016/j.psep.2017.04.013 CrossRefGoogle Scholar
  52. Tate KL, Li S, Yu M, Carreon MA (2016) Zeolite adsorbent-MOF layered nanovalves for CH4 storage. Adsorption 23(1):1–6.  https://doi.org/10.1007/s10450-016-9813-x CrossRefGoogle Scholar
  53. Tong M, Liu D, Yang Q, Devautourvinot S, Maurin G, Zhong C (2013) Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J Mater Chem A 1(30):8534–8537.  https://doi.org/10.1039/c3ta11807j CrossRefGoogle Scholar
  54. Verlicchi P, Zambello E (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil—a critical review. Sci Total Environ 538:750–767.  https://doi.org/10.1016/j.scitotenv.2015.08.108 CrossRefGoogle Scholar
  55. Wan D, Yuan S, Li GL, Neoh KG, Kang ET (2010) Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode. ACS Appl Mater Interfaces 2(11):3083–3091.  https://doi.org/10.1021/am100591t CrossRefGoogle Scholar
  56. Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640.  https://doi.org/10.1016/j.jenvman.2016.07.049 CrossRefGoogle Scholar
  57. Wang T, Zhang L, Wang H, Yang W, Fu Y, Zhou W, Yu W, Xiang K, Su Z, Dai S, Chai L (2013) Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly (diallyldimethylammonium chloride) and their application in arsenic removal. Appl Mater Interfaces 5(23):12449–12459.  https://doi.org/10.1021/am403533v CrossRefGoogle Scholar
  58. Wang C, Liu X, Demir NK, Chen JP, Li K (2016) Applications of water stable metal-organic frameworks. Chem Soc Rev 45(18):5107–5134.  https://doi.org/10.1039/c6cs00362a CrossRefGoogle Scholar
  59. Wei H, Deng S, Huang Q, Nie Y, Wang B, Huang J, Yu G (2013) Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res 47(12):4139–4147.  https://doi.org/10.1016/j.watres.2012.11.062 CrossRefGoogle Scholar
  60. Wilkinson JL, Hooda PS, Barker J, Barton S, Swinden J (2015) Ecotoxic pharmaceuticals, personal care products, and other emerging contaminants: a review of environmental, receptor-mediated, developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci Technol 46(4):336–381.  https://doi.org/10.1080/10643389.2015.1096876 CrossRefGoogle Scholar
  61. Xu L, Wang J (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153.  https://doi.org/10.1021/es300303f CrossRefGoogle Scholar
  62. Zhan L, Li K, Zhu X, Lv C (2002) Adsorption limit of supercritical hydrogen on super-activated carbon. Carbon 40(3):455–457.  https://doi.org/10.1016/S0008-6223(01)00263-9 CrossRefGoogle Scholar
  63. Zhu BJ, Yu XY, Jia Y, Peng FM, Sun B, Zhang MY, Luo T, Liu J, Huang X (2012) Iron and 1,3,5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116(116):8601–8607.  https://doi.org/10.1021/jp212514a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and Natural ResourcesRenmin University of ChinaBeijingChina
  2. 2.College of Chemical EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing Advanced Innovation Center for Future Urban DesignBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations