Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4202–4214 | Cite as

Photocatalytic hydrogen production by strontium titanate-based perovskite doped europium (Sr0.97Eu0.02Zr0.1Ti0.9O3)

  • Andrés López-VásquezEmail author
  • Pilar Delgado-Niño
  • Donaldo Salas-Siado
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries


The aim of the present research was to study the photocatalytic activity under UV/visible irradiation of the ceramic compound Sr0.97Eu0.02Zr0.1Ti0.9O3 (SEZT1) using ethylenediaminetetraacetic acid (EDTA) as a sacrificial agent to produce H2. The effects of the reaction parameters such as pH, the initial concentration of the sacrificial agent, and the amount of photocatalyst were systematically investigated through response surface methodology. The results showed that the photocatalytic performance was strongly affected by higher levels of sacrificial agent concentration (70.0 mM EDTA) and by low amounts of photocatalyst SEZT1 (0.01 g/L as catalyst loading) at alkaline conditions (pH 9.0) after 5 h of UV irradiation (6140.04 μmol), using Eu-doped strontium zirconate titanate as semiconductor.


Europium Perovskite Photocatalytic hydrogen production Titanate zirconate 


  1. Aslan N, Cebeci Y (2007) Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86:90–97. CrossRefGoogle Scholar
  2. Box GEP (2009) Statistics for experimenters: design, innovation, and discovery, second edition + JMP version 6 software set. WileyGoogle Scholar
  3. Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. WileyGoogle Scholar
  4. Chen H, Xie Y, Sun X, Lv M, Wu F, Zhang L, Li L, Xu X (2015) Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts. Dalton Trans 44:13030–13039. CrossRefGoogle Scholar
  5. Delgado–Niño P, López–Rivera SA, Mestres–Vila L et al (2012) Optical and structural characterization of SrZr0,1Ti0,9O3. J Lumin 132:2546–2552. CrossRefGoogle Scholar
  6. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. CrossRefGoogle Scholar
  7. Fomichev VV (1994) The vibrational spectra of complex oxides with a perovskite-type structure. Russ Chem Bull 43(12):1943–1952CrossRefGoogle Scholar
  8. Gombac V, Sordelli L, Montini T, Delgado JJ, Adamski A, Adami G, Cargnello M, Bernal S, Fornasiero P (2010) CuOx−TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. J Phys Chem A 114:3916–3925. CrossRefGoogle Scholar
  9. Hinkelmann K, Kempthorne O (2007) Design and analysis of experiments, volume 1: introduction to experimental design. WileyGoogle Scholar
  10. Hirata T, Ishioka K, Kitajima M (1996) Vibrational spectroscopy and x-ray diffraction of perovskite compounds Sr1−xMxTiO3(M= Ca, Mg; 0 ≤x≤ 1). J Solid State Chem 124:353–359. CrossRefGoogle Scholar
  11. Huízar-Félix AM, Hernández T, de la Parra S, Ibarra J, Kharisov B (2012) Sol–gel based Pechini method synthesis and characterization of Sm1−xCaxFeO3 perovskite 0.1≤x≤0.5. Powder Technol 229:290–293. CrossRefGoogle Scholar
  12. Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V (2017) Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B Environ 207:182–194. CrossRefGoogle Scholar
  13. Iwashina K, Kudo A (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Am Chem Soc 133:13272–13275. CrossRefGoogle Scholar
  14. Jana P, de la Peña O’Shea VA, Mata Montero C et al (2016) Factors influencing the photocatalytic activity of alkali NbTa perovskites for hydrogen production from aqueous methanol solutions. Int J Hydrog Energy 41:19921–19928. CrossRefGoogle Scholar
  15. Jia A, Su Z, Lou L-L, Liu S (2010) Synthesis and characterization of highly-active nickel and lanthanum co-doped SrTiO3. Solid State Sci 12:1140–1145. CrossRefGoogle Scholar
  16. Jo J (1992) Construction and properties of Box-Behnken designs. Virginia Polytechnic Institute and State UniversityGoogle Scholar
  17. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034. CrossRefGoogle Scholar
  18. Khuri AI (2006) Response surface methodology and related topics. World ScientificGoogle Scholar
  19. Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995. CrossRefGoogle Scholar
  20. Lee KM, Hamid SBA (2015) Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-chlorophenoxyacetic acid using UV-active ZnO photocatalyst. Materials (Basel, Switzerland) 8:339–354. CrossRefGoogle Scholar
  21. Li F, Gu Q, Niu Y, Wang R, Tong Y, Zhu S, Zhang H, Zhang Z, Wang X (2017) Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: role of Pt and product distribution. Appl Surf Sci 391:251–258. CrossRefGoogle Scholar
  22. Lu L, Lv M, Liu G, Xu X (2017a) Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3. Appl Surf Sci 391:535–541. CrossRefGoogle Scholar
  23. Lu L, Ni S, Liu G, Xu X (2017b) Structural dependence of photocatalytic hydrogen production over La/Cr co-doped perovskite compound ATiO3 (A = Ca, Sr and Ba). Int J Hydrog Energy 42:23539–23547. CrossRefGoogle Scholar
  24. Ma BJ, Kim JS, Choi CH, Woo SI (2013) Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light. Int J Hydrog Energy 38:3582–3587. CrossRefGoogle Scholar
  25. Madden TH, Datye AK, Fulton M, Prairie MR, Majumdar SA, Stange BM (1997) Oxidation of metal−EDTA complexes by TiO2 photocatalysis. Environ Sci Technol 31:3475–3481. CrossRefGoogle Scholar
  26. Michel CR, Gago AS, Guzmán-Colín H, López-Mena ER, Lardizábal D, Buassi-Monroy OS (2004) Electrical properties of the perovskite Y0.9Sr0.1CoO3−δ prepared by a solution method. Mater Res Bull 39:2295–2302. CrossRefGoogle Scholar
  27. Montgomery DC (2012) Design and analysis of experiments, 8th edn. John Wiley & Sons, IncorporatedGoogle Scholar
  28. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. WileyGoogle Scholar
  29. Nörtemann B (1999) Biodegradation of EDTAGoogle Scholar
  30. Ouyang S, Tong H, Umezawa N, Cao J, Li P, Bi Y, Zhang Y, Ye J (2012) Surface-alkalinization-induced enhancement of photocatalytic H2 evolution over SrTiO3-based photocatalysts. J Am Chem Soc 134:1974–1977. CrossRefGoogle Scholar
  31. Ratnawati, Gunlazuardi J, Dewi EL, Slamet (2014) Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol–water solution. Int J Hydrog Energy 39:16927–16935. CrossRefGoogle Scholar
  32. Russell HN, Albertson W, Davis DN (1941) The spark spectrum of europium, Eu II. Phys Rev 60(9):641–656CrossRefGoogle Scholar
  33. Saadetnejad D, Yıldırım R (2018) Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. Int J Hydrog Energy 43:1116–1122. CrossRefGoogle Scholar
  34. Samokhvalov A (2017) Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew Sust Energ Rev 72:981–1000CrossRefGoogle Scholar
  35. Shen P, Lofaro JC, Woerner WR et al (2013) Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem Eng J 223:200–208. CrossRefGoogle Scholar
  36. Slamet, Ratnawati, Gunlazuardi J, Dewi EL (2017) Enhanced photocatalytic activity of Pt deposited on titania nanotube arrays for the hydrogen production with glycerol as a sacrificial agent. Int J Hydrog Energy 42:24014–24025. CrossRefGoogle Scholar
  37. Su E-C, Huang B-S, Liu C-C, Wey M-Y (2015) Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts. Renew Energy 75:266–271. CrossRefGoogle Scholar
  38. Subha N, M M, Myilsamy M et al (2017) Influence of synthesis conditions on the photocatalytic activity of mesoporous Ni doped SrTiO3/TiO2 heterostructure for H2 production under solar light irradiation. Colloids Surf A Physicochem Eng Asp 522:193–206. CrossRefGoogle Scholar
  39. Subramonian W, Wu TY, Chai S-P (2015) An application of response surface methodology for optimizing coagulation process of raw industrial effluent using Cassia obtusifolia seed gum together with alum. Ind Crop Prod 70:107–115. CrossRefGoogle Scholar
  40. Subramonian W, Wu TY, Chai S-P (2017) Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: treatment efficiency and characterizations of reused photocatalyst. J Environ Manag 187:298–310. CrossRefGoogle Scholar
  41. Sun X, Xie Y, Wu F, Chen H, Lv M, Ni S, Liu G, Xu X (2015) Photocatalytic hydrogen production over chromium doped layered perovskite Sr2TiO4. Inorg Chem 54:7445–7453. CrossRefGoogle Scholar
  42. Tan H, Zhao Z, Zhu W, Coker EN, Li B, Zheng M, Yu W, Fan H, Sun Z (2014) Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl Mater Interfaces 6:19184–19190. CrossRefGoogle Scholar
  43. Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu SS, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrog Energy 37:10451–10456. CrossRefGoogle Scholar
  44. Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6:7420–7426. CrossRefGoogle Scholar
  45. Wang J, Yin S, Komatsu M, Zhang Q, Saito F, Sato T (2004) Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. J Photochem Photobiol A Chem 165:149–156. CrossRefGoogle Scholar
  46. Wang D, Ye J, Kako T, Kimura T (2006) Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites. J Phys Chem B 110:15824–15830. CrossRefGoogle Scholar
  47. Whitcomb PJ, Anderson MJ (2004) RSM simplified: optimizing processes using response surface methods for design of experiments. Taylor & FrancisGoogle Scholar
  48. Wu F, Lv M, Sun X, Xie Y, Chen H, Ni S, Liu G, Xu X (2016) Efficient photocatalytic oxygen production over nitrogen-doped Sr4Nb2O9 under visible-light irradiation. ChemCatChem 8:615–623. CrossRefGoogle Scholar
  49. Xie T-H, Sun X, Lin J (2008) Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)−O−Fe(II) formed in Fe-doped SrTiO3. J Phys Chem C 112:9753–9759. CrossRefGoogle Scholar
  50. Zhang C, Jia Y, Jing Y, Yao Y, Ma J, Sun J (2013) Effect of non-metal elements (B, C, N, F, P, S) mono-doping as anions on electronic structure of SrTiO3. Comput Mater Sci 79:69–74. CrossRefGoogle Scholar
  51. Zheng X-J, Wei L-F, Zhang Z-H, Jiang QJ, Wei YJ, Xie B, Wei MB (2009) Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int J Hydrog Energy 34:9033–9041. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrés López-Vásquez
    • 1
    Email author
  • Pilar Delgado-Niño
    • 2
  • Donaldo Salas-Siado
    • 2
  1. 1.Chemical Engineering DepartmentUniversidad Nacional de ColombiaManizalesColombia
  2. 2.Faculty of EngineeringUniversidad LibreBogotáColombia

Personalised recommendations