Environmental Science and Pollution Research

, Volume 25, Issue 32, pp 32178–32195 | Cite as

Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species

  • Tibor BenedekEmail author
  • Flóra Szentgyörgyi
  • István Szabó
  • Balázs Kriszt
  • Fruzsina Révész
  • Júlia Radó
  • Gergely Maróti
  • András Táncsics
Research Article


Due to their high resistance against environmental challenges, bacterial biofilms are ubiquitous and are frequently associated with undesired phenomena in environmental industry (e. g. biofouling). However, because of the high phylogenetic and functional diversity, bacterial biofilms are important sources of biotechnologically relevant microorganisms, e.g. those showing bioremediation potential. In our previous work, the high phylogenetic and metabolic diversity of a clogging biofilm, developed in a simple aromatic hydrocarbon (BTEX)-contaminated groundwater well was uncovered. The determination of relationships between different groups of biofilm bacteria and certain metabolic traits has been omitted so far. Therefore, by setting up new biofilm-based enrichment microcosms, the research goal of the present study was to identify the aerobic/hypoxic BTEX-degrading and/or prolific biofilm-forming bacteria. The initial bacterial community composition as well as temporal dynamics due to the selective enrichment has been determined. The obtained results indicated that the concentration of dissolved oxygen may be a strong selective force on the evolution and final structure of microbial communities, developed in hydrocarbon-contaminated environments. Accordingly, members of the genus Malikia proved to be the most dominant community members of the aerobic BTEX-degrading enrichments. Acidovorax spp. dominated the oxygen-limited/hypoxic setup. During the study, a strain collection of 23 different bacterial species was obtained. Non-pathogenic members of this strain collection, with outstanding biodegradation (e.g. Pseudomonas, Variovorax isolates) and biofilm-forming potential (e.g. Rhizobium), may potentially be applied in the development of biofilm-based semipermeable reactive biobarriers.


Biodegradation Biobarriers Biofilm BTEX Catechol 2,3-dioxygenases Oxygen-limited 


Funding information

This work was supported by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities; by the Economic Development and Innovation Operational Program GINOP-2.1.1-15-2015-00630; and by the Higher Education Institutional Excellence Program (1783-3/2018/FEKUTSTRAT) awarded by the Ministry of Human Capacities within the framework of water related researches of Szent István University.

Supplementary material

11356_2018_3096_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1370 kb)


  1. Aburto A, Ball AS (2009) Bacterial population dynamics and separation of active degraders by stable isotope probing during benzene degradation in a BTEX-impacted aquifer. Rev Int Contam Ambient 25:147–156Google Scholar
  2. Aburto A, Peimbert M (2011) Degradation of a benzene-toluene mixture by hydrocarbon-adapted bacterial communities. Ann Microbiol 61:553–562CrossRefGoogle Scholar
  3. Ajithkumar B, Ajithkumar VP, Iriye R (2003) Degradation of 4-amylphenol and 4-hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Res Microbiol 154:17–23CrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  5. Arenghi FL, Berlanda D, Galli E, Sello G, Barbieri P (2001) Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Appl Environ Microbiol 67:3304–3308CrossRefGoogle Scholar
  6. Benedek T, Táncsics A, Szabó I, Farkas M, Szoboszlay S, Fábián K, Maróti G, Kriszt B (2016) Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless stell surface in a gasoline-contaminated hypoxic groundwater. Environ Sci Poll Res 23:9019–9035CrossRefGoogle Scholar
  7. Benedek T, Táncsics A, Szilágyi N, Tóth I, Farkas M, Szoboszlay S, Krifaton C, Hartman M, Kriszt B (2014) Analysis of biofilm bacterial communities responsible for carbon removal through a reactor cascade treating wastewater. W J Microbiol Biotechnol 30:977–987CrossRefGoogle Scholar
  8. Benedek T, Máthé I, Salamin R, Rákos S, Pásztohy Z, Márialigeti K, Lányi S (2012) Potential bacterial soil inoculant made up by Rhodococcus sp. and Pseudomonas sp. for remediation in situ of hydrocarbon- and heavy metal polluted soils. Studia UBB Chemia 57:199–211Google Scholar
  9. Benedek T, Vajna B, Táncsics A, Márialigeti K, Lányi S, Máthé I (2013) Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution. W J Microbiol Biotechnol 29:1989–2002CrossRefGoogle Scholar
  10. Brennerova MV, Josefina J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227CrossRefGoogle Scholar
  11. Castellane TCL, Campanharo JC, Colnago LA, Coutinho ID, Lopes EM, Lemos MVF, de Macedo Lemos EG (2017) Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. Int J Biol Macromol 96:361–369CrossRefGoogle Scholar
  12. Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH, Tindall BJ (2007) Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 57:923–931CrossRefGoogle Scholar
  13. Carreghini A, Saponaro D, Sezenna E (2013) Biobarriers for groundwater treatment: a review. Water Sci Technol 67:453–468CrossRefGoogle Scholar
  14. Characklis WG (1991) Biofouling: effects and control In: Flemming HC, Geesey GG, editors Biofouling and biocorrosion in industrial water systems Germany: Springer-Verlag p 7–28Google Scholar
  15. Coral G, Karagöz S (2005) Isolation and characterization of phenanthrene-degrading bacteria from a petroleum refinery soil. Ann Microbiol 55:255–259Google Scholar
  16. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13. CrossRefGoogle Scholar
  17. Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69:275–284CrossRefGoogle Scholar
  18. Fahy A, McGenity TJ, Timmis KN, Ball AS (2006) Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270CrossRefGoogle Scholar
  19. Guieysse B, Bernhoft I, Anderssion BE, Henrysson T, Olsson S, Mattiasson B (2000) Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor. Appl Microbiol Biotechnol 54:826–831CrossRefGoogle Scholar
  20. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefGoogle Scholar
  21. Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613Google Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  23. Hendrickx B, Dejonghe W, Boenne W, Brennerova M, Cernik M, Lederer T, Bucheli-Witschel M, Bastiaens L, Verstraete W, Top EM, Diels L, Springael D (2005) Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: an in situ mesocosm study. Appl Environ Microbiol 71:3815–3825CrossRefGoogle Scholar
  24. Hong HB, Nam IH, Murugsen K, Kim YM, Chang YS (2004) Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins. Biodegr 15:3030–3313CrossRefGoogle Scholar
  25. Houdt RV, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131CrossRefGoogle Scholar
  26. Huang Y, Li L (2014) Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ Res 86:277–284CrossRefGoogle Scholar
  27. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp nov: a selenite-reducing α-proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460CrossRefGoogle Scholar
  28. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRefGoogle Scholar
  29. Inoue K, Widada J, Nakai S, Endoh T, Urata M, Ashikawa Y, Shintani M, Saiki Y, Yoshida T, Habe H, Omori T, Nojiri H (2005) Diversity of carbazole-degrading bacteria having the car gene cluster: isolation of novel gram-positive carbazole-degrading bacterium. FEMS Microbiol Lett 245:145–153CrossRefGoogle Scholar
  30. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1786CrossRefGoogle Scholar
  31. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na PSC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  32. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluatio of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res e1:41. CrossRefGoogle Scholar
  33. Kristanti RA, Kanbe M, Hadibarata T, Toyama T, Tanaka Y, Mori K (2012) Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrhiza. Environ Sci Pollut Res 19:1852–1858CrossRefGoogle Scholar
  34. Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y, Futamata H, Hiraishi A (2005) Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol 28:165–174CrossRefGoogle Scholar
  35. Kukor JJ, Olsen RH (1996) Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 62:1728–1740Google Scholar
  36. Kumari AMS, Routray A, Yadav D, Madhavan R (2013) Imipenem resistance and biofilm production in Acinetobacter. Drug Invent Today 5:256–258CrossRefGoogle Scholar
  37. Lattore AA, Van Kessel JS, Karns JS, Zurakowski MJ, Pradhan AK, Boor KJ, Jayarao BM, Houser BA, Daugherty CS, Schukken YH (2010) Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J Dairy Sci 93:2792–2802CrossRefGoogle Scholar
  38. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522Google Scholar
  39. Martínez-Lavanchy PM, Chen Z, Lünsman V, Marin-Cevada V, Vilchet-Vargas R, Pieper DH, Reiche N, Kappelmeyer U, Imparato V, Junca H, Nijenhuis I, Müller JA, Kuschk P, Heipieper HJ (2015) Microbial toluene removal in hypoxic model constructed wetlands occurs predominantly via the ring monooxygenation pathway. Appl Environ Microbiol 81:6241–6252CrossRefGoogle Scholar
  40. Martirani-Von Abercron SM, Marín P, Solsona-Ferraz M, Castaneda-Catana MA, Marques S (2017) Napthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microb Biotechnol 10:1781–1796CrossRefGoogle Scholar
  41. Masák J, Čejková A, Schreiberová O, Řezanka T (2014) Pseudomonas biofilms: possibilities of their control. FEMS Microbiol Ecol 89:1–14. CrossRefGoogle Scholar
  42. Nam IH, Chang YS, Hong HB, Lee YH (2003) A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorphenol. Appl Microbiol Biotechnol 62:284–290CrossRefGoogle Scholar
  43. Nicolella C, Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33CrossRefGoogle Scholar
  44. Onaca C, Kieninger M, Engesser KH (2007) Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700. Am Soc Microbiol 189:3759–3767Google Scholar
  45. Parales RE (2010) Hydrocarbon degradation by Betaproteobacteria In: Timmis KN editor: Handbook of hydrocarbon and lipid microbiology Germany: Springer, Berlin, Heidelberg p 1715–1724CrossRefGoogle Scholar
  46. Rajkowski KT (2009) Biofilms in fish processing In: Fratamico PM, Annous BA, Gunther NW, editors Biofilms in the food and beverage industries United Kingdom (UK): Woodhead Publishing p 499–516CrossRefGoogle Scholar
  47. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms-review article. Biomed Res Int http://dxdoiorg/101155/2015/759348Google Scholar
  48. Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol 182:2134–2141CrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  50. Satola B, Wübbeler JH (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97:541–560CrossRefGoogle Scholar
  51. Sheng XX, Ting UP, Pehkonen SA (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corrosion Sci 49:2159–2176CrossRefGoogle Scholar
  52. Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620CrossRefGoogle Scholar
  53. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380CrossRefGoogle Scholar
  54. Spring S, Wagner M, Schumann P, Kampfer P (2005) Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinose as Malikia spinose comb. nov. Int J Syst Evol Microbiol 55:621–629CrossRefGoogle Scholar
  55. Stepanović S, Vuković D, Dakić I, Savić B, Čvabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179CrossRefGoogle Scholar
  56. Stickler DJ (1996) Bacterial biofilms and the encrustation of urethral catheters. Biofouling 9:293–305CrossRefGoogle Scholar
  57. Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y, Naoki H (2009) Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD 653. Appl Environ Microbiol 75:4452–4458CrossRefGoogle Scholar
  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  59. Táncsics A, Szabó I, Baka E, Szoboszlay S, Kukolya J, Kriszt B, Márialigeti K (2010) Investigation of catechol 2,3-dioxygenase and 16S rRNA gene diversity in hypoxic, petroleum hydrocarbon contaminated groundwater. Syst Appl Microbiol 33:398–406CrossRefGoogle Scholar
  60. Táncsics A, Farkas M, Szoboszlay S, Szabó I, Kukolya J, Vajna B, Kovács B, Benedek T, Kriszt B (2013) One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. Syst Appl Microbiol 36:339–350CrossRefGoogle Scholar
  61. Táncsics A, Szoboszlay S, Szabó I, Farkas M, Kovács B, Kukolya J, Mayer Z, Kriszt B (2012) Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. Environ Sci Technol 46:232–240CrossRefGoogle Scholar
  62. Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:1–11CrossRefGoogle Scholar
  63. Tizzard AC, Bergsma JH, Lloyd-Jones G (2006) A resazurin-based biosensor for organic pollutants. Biosens Bioelectron 22:759–763CrossRefGoogle Scholar
  64. Wang L, Qiao N, Sun F, Shao Z (2008) Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12:335–342CrossRefGoogle Scholar
  65. Wittich RM, Strömpl C, Moore ER, Blasco R, Timmis KN (1999) Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J Ind Microbiol Biotechnol 23:353–358CrossRefGoogle Scholar
  66. Xu JL, He J, Wang ZC, Wang K, Li WJ, Tang SK, Li SP (2007) Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol 57:2754–2757CrossRefGoogle Scholar
  67. Zeinali M, Vossoughi M, Ardestani SK (2007) Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett Appl Microbiol 45:622–628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Regional University Centre of Excellence in Environmental IndustrySzent István UniversityGödöllőHungary
  2. 2.Department of Environmental Safety and EcotoxicologySzent István UniversityGödöllőHungary
  3. 3.Institute of Plant BiologyBiological Research Centre of the Hungarian Academy of SciencesSzegedHungary
  4. 4.Faculty of Agricultural and Economics Studies, Tessedik CampusSzent István UniversitySzarvasHungary

Personalised recommendations