Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 30863–30879 | Cite as

Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies

  • Bo Jiang
  • Luning Lian
  • Yi Xing
  • Nana Zhang
  • Yating Chen
  • Pei Lu
  • Dayi Zhang
Review Article

Abstract

Nanotechnology is an emerging technique drawing increasing attentions in biomedical, electronic, environmental, and industrial application. Nanoparticles (NPs) possess unique optical, electrical, catalytic, and thermal properties, among which magnetic NPs (MNPs) are one of the most important groups with excellent superparamagnetism property, large surface area, and biocompatibility. In this review, methods for synthesizing and functionalizing MNPs are summarized and linked to their applications in environmental science as either adsorbents or catalysts for removing contaminants from environmental matrices, illustrating stronger reactivity, higher removal capacity, and fast kinetics. Additionally, we also comprehensively discuss the application of MNPs as (bio)sensors to selectively and sensitively detect the presence of environmental contaminants or pathogenic bacteria. This work summarizes the recent progresses of using MNPs as powerful tools in environmental science and engineering, raising their state-of-art application from environmental perspectives and benefiting researchers interested in NPs and environmental studies.

Keywords

Magnetic nanoparticles (MNPs) Environmental remediation Sensor Biosensor Synthesis Functionalization 

Notes

Funding information

This study was funded by the National Research Council of Science and Technology Major Project on Water Pollution Control and Treatment (2015ZX07205003), Fundamental Research Funds for the Central Universities (FRF-TP-16-063A1), China Postdoctoral Scientific Fund (2017 M620626), and Beijing Municipal Science and Technology Project (Z161100002716023).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Afkhami A, Moosavi R (2010) Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J Hazard Mater 174:398–403.  https://doi.org/10.1016/j.jhazmat.2009.09.066 CrossRefGoogle Scholar
  2. Agrawal S, Paknikar K, Bodas D (2014) Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS. Microelectron Eng 115:66–69.  https://doi.org/10.1016/j.mee.2013.10.020 CrossRefGoogle Scholar
  3. Ahamed M et al (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108.  https://doi.org/10.1016/j.tox.2011.02.010 CrossRefGoogle Scholar
  4. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144.  https://doi.org/10.1186/1556-276x-7-144 CrossRefGoogle Scholar
  5. Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag 60:758–783.  https://doi.org/10.1007/s00267-017-0896-2 CrossRefGoogle Scholar
  6. Alex D, Mathew A, Sukumaran RK (2014) Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions. Bioresour Technol 167:547–550.  https://doi.org/10.1016/j.biortech.2014.05.110 CrossRefGoogle Scholar
  7. Alexander S, Oliver R, SW J (2010) Nanoparticles as semi-heterogeneous catalyst supports. Chem Eur J 16:8950–8967.  https://doi.org/10.1002/chem.200903462 CrossRefGoogle Scholar
  8. Alzahrani E (2015) Photodegradation of eosin Y using silver-doped magnetic nanoparticles. Int J Anal Chem 2015:797606.  https://doi.org/10.1155/2015/797606 CrossRefGoogle Scholar
  9. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28:5381–5389.  https://doi.org/10.1016/j.biomaterials.2007.07.051 CrossRefGoogle Scholar
  10. Arbabi M, Hemati S, Shamsizadeh Z, Arbabi A (2017) Nitrate removal from aqueous solution by almond shells activated with magnetic nanoparticles. Desalin Water Treat 80:344–351.  https://doi.org/10.5004/dwt.2017.20999 CrossRefGoogle Scholar
  11. Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29-30:208–213.  https://doi.org/10.1016/j.jclepro.2012.01.029 CrossRefGoogle Scholar
  12. Arias JL, Gallardo V, Gómez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77:309–321.  https://doi.org/10.1016/S0168-3659(01)00519-3 CrossRefGoogle Scholar
  13. Arias JL, López-Viota M, Delgado ÁV, Ruiz MA (2010) Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf B: Biointerfaces 77:111–116.  https://doi.org/10.1016/j.colsurfb.2010.01.030 CrossRefGoogle Scholar
  14. Arias JL, López-Viota M, Sáez-Fernández E, Ruiz MA, Delgado ÁV (2011) Engineering of an antitumor (core/shell) magnetic nanoformulation based on the chemotherapy agent ftorafur. Colloids Surf A Physicochem Eng Asp 384:157–163.  https://doi.org/10.1016/j.colsurfa.2011.03.051 CrossRefGoogle Scholar
  15. Aurich K, Schwalbe M, Clement JH, Weitschies W, Buske N (2007) Polyaspartate coated magnetite nanoparticles for biomedical applications. J Magn Magn Mater 311:1–5.  https://doi.org/10.1016/j.jmmm.2006.11.154 CrossRefGoogle Scholar
  16. Azizian G, Riyahi-Alam N, Haghgoo S, Moghimi HR, Zohdiaghdam R, Rafiei B, Gorji E (2012) Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale Res Lett 7:549.  https://doi.org/10.1186/1556-276X-7-549 CrossRefGoogle Scholar
  17. Baig RBN, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752–770.  https://doi.org/10.1039/c2cc35663e CrossRefGoogle Scholar
  18. Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J Magn Magn Mater 321:117–122.  https://doi.org/10.1016/j.jmmm.2008.08.055 CrossRefGoogle Scholar
  19. Banerjee R, Katsenovich Y, Lagos L, McIintosh M, Zhang X, Li CZ (2010) Nanomedicine: magnetic nanoparticles and their biomedical applications. Curr Med Chem 17:3120–3141.  https://doi.org/10.2174/092986710791959765 CrossRefGoogle Scholar
  20. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37.  https://doi.org/10.1007/s000180300002 CrossRefGoogle Scholar
  21. Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346.  https://doi.org/10.1016/j.cej.2009.04.051 CrossRefGoogle Scholar
  22. Beji Z et al (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on endothelial cells. Chem Mater 22:5420–5429.  https://doi.org/10.1021/cm1001708 CrossRefGoogle Scholar
  23. Beveridge JS, Stephens JR, Williams ME (2011) The use of magnetic nanoparticles in analytical chemistry. Annu Rev Anal Chem 4:251–273.  https://doi.org/10.1146/annurev-anchem-061010-114041 CrossRefGoogle Scholar
  24. Bromberg L, Chang EP, Hatton TA, Concheiro A, Magarinos B, Alvarez-Lorenzo C (2011) Bactericidal core-shell paramagnetic nanoparticles functionalized with poly(hexamethylene biguanide). Langmuir 27:420–429.  https://doi.org/10.1021/la1039909 CrossRefGoogle Scholar
  25. Burstein GT (1997) The iron oxides: structure, properties, reactions, occurrence and uses: R. M. Cornell and U. Schwertmann. 573 pp. VCH, Weinheim and New York, 1996. ISBN: 3-527-28576-8. Corros Sci 39:1499–1500.  https://doi.org/10.1016/S0010-938X(97)00096-6 CrossRefGoogle Scholar
  26. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71.  https://doi.org/10.1116/1.2815690 CrossRefGoogle Scholar
  27. Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7(10):3657–3703.  https://doi.org/10.3390/ijerph7103657 CrossRefGoogle Scholar
  28. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370.  https://doi.org/10.1016/j.jcis.2006.10.023 CrossRefGoogle Scholar
  29. Cannas C, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C (1998) Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J Phys Chem B 102:7721–7726.  https://doi.org/10.1021/jp981355w CrossRefGoogle Scholar
  30. Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP (2006) Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys 99:1–3.  https://doi.org/10.1063/1.2170593 CrossRefGoogle Scholar
  31. Chanteau B, Fresnais J, Berret JF (2009) Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium. Langmuir 25:9064–9070.  https://doi.org/10.1021/la900833v CrossRefGoogle Scholar
  32. Chen M, Yamamuro S, Farrell D, Majetich SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93:7551–7553.  https://doi.org/10.1063/1.1555312 CrossRefGoogle Scholar
  33. Chen SZ, Du D, Huang J, Zhang AQ, Tu HY, Zhang AD (2011) Rational design and application of molecularly imprinted sol-gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta 84:451–456.  https://doi.org/10.1016/j.talanta.2011.01.047 CrossRefGoogle Scholar
  34. Chen D, Deng J, Liang J, Xie J, Hu CH, Huang KH (2013) A core-shell molecularly imprinted polymer grafted onto a magnetic glassy carbon electrode as a selective sensor for the determination of metronidazole. Sensors Actuators B Chem 183:594–600.  https://doi.org/10.1016/j.snb.2013.04.050 CrossRefGoogle Scholar
  35. Chen J, Hao Y, Chen M (2014) Rapid and efficient removal of Ni2+ from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles. Environ Sci Pollut Res 21:1671–1679.  https://doi.org/10.1007/s11356-013-2041-y CrossRefGoogle Scholar
  36. Chen J, Pang S, He L, Nugen SR (2016) Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy. Biosens Bioelectron 85:726–733.  https://doi.org/10.1016/j.bios.2016.05.068 CrossRefGoogle Scholar
  37. Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8:369–375.  https://doi.org/10.1038/nnano.2013.70 CrossRefGoogle Scholar
  38. Colombo M et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334.  https://doi.org/10.1039/c2cs15337h CrossRefGoogle Scholar
  39. Crespo P et al (2013) Magnetism in nanoparticles: tuning properties with coatings. J Phys Condens Matter 25:484006.  https://doi.org/10.1088/0953-8984/25/48/484006 CrossRefGoogle Scholar
  40. Cui L, Chen P, Zhang D, Li J, Martin FL, Zhang K (2015) Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency. Water Res 87:282–291.  https://doi.org/10.1016/j.watres.2015.09.037 CrossRefGoogle Scholar
  41. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353.  https://doi.org/10.1016/s0956-5663(01)00125-7 CrossRefGoogle Scholar
  42. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:398569.  https://doi.org/10.1155/2014/398569 CrossRefGoogle Scholar
  43. Dey T (2006) Polymer-coated magnetic nanoparticles: surface modification and end-functionalization. J Nanosci Nanotechnol 6:2479–2483.  https://doi.org/10.1166/jnn.2006.534 CrossRefGoogle Scholar
  44. Duan M, Xu ZP, Zhang YL, Fang SW, Song XY, Xiang Y (2017) Core-shell composite nanoparticles with magnetic and temperature dual stimuli-responsive properties for removing emulsified oil. Adv Powder Technol 28:1291–1297.  https://doi.org/10.1016/j.apt.2017.02.017 CrossRefGoogle Scholar
  45. Durán JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983.  https://doi.org/10.1002/jps.21249 CrossRefGoogle Scholar
  46. Dutra GVS, Araujo OA, Neto WS, Garg VK, Oliveira AC, Junior AF (2017) Obtaining superhydrophopic magnetic nanoparticles applicable in the removal of oils on aqueous surface. Mater Chem Phys 200:204–216.  https://doi.org/10.1016/j.matchemphys.2017.07.070 CrossRefGoogle Scholar
  47. Dzudzevic Cancar H et al (2016) A novel acetylcholinesterase biosensor: core–shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl Mater Interfaces 8:8058–8067.  https://doi.org/10.1021/acsami.5b12383 CrossRefGoogle Scholar
  48. Efrima S, Zeiri L (2009) Understanding SERS of bacteria. J Raman Spectrosc 40:277–288.  https://doi.org/10.1002/jrs.2121 CrossRefGoogle Scholar
  49. El-Sherif RM, Lasheen TA, Jebril EA (2017) Fabrication and characterization of CeO2-TiO2-Fe2O3 magnetic nanoparticles for rapid removal of uranium ions from industrial waste solutions. J Mol Liq 241:260–269.  https://doi.org/10.1016/j.molliq.2017.05.119 CrossRefGoogle Scholar
  50. Falk R, Randolph TW, Meyer JD, Kelly RM, Manning MC (1997) Controlled release of ionic compounds from poly (l-lactide) microspheres produced by precipitation with a compressed antisolvent. J Control Release 44:77–85.  https://doi.org/10.1016/S0168-3659(96)01508-8 CrossRefGoogle Scholar
  51. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37.  https://doi.org/10.1007/bf03245856 CrossRefGoogle Scholar
  52. Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10:625–638.  https://doi.org/10.3390/s100100625 CrossRefGoogle Scholar
  53. Gan GQ, Zhao P, Zhang XQ, Liu J, Liu JJ, Zhang CL, Hou XH (2017) Degradation of pantoprazole in aqueous solution using magnetic nanoscaled Fe3O4/CeO2 composite: effect of system parameters and degradation pathway. J Alloys Compd 725:472–483.  https://doi.org/10.1016/j.jallcom.2017.07.063 CrossRefGoogle Scholar
  54. Gass J, Poddar P, Almand J, Srinath S, Srikanth H (2006) Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Adv Funct Mater 16:71–75.  https://doi.org/10.1002/adfm.200500335 CrossRefGoogle Scholar
  55. Ge S et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599.  https://doi.org/10.1021/jp902953t CrossRefGoogle Scholar
  56. Ge F, Li M-M, Ye H, Zhao B-X (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211-212:366–372.  https://doi.org/10.1016/j.jhazmat.2011.12.013 CrossRefGoogle Scholar
  57. Giouroudi I, Keplinger F (2013) Microfluidic biosensing systems using magnetic nanoparticles. Int J Mol Sci 14:18535–18556.  https://doi.org/10.3390/ijms140918535 CrossRefGoogle Scholar
  58. Gomes AR, Justino C, Rocha-Santos T, Freitas AC, Duarte AC, Pereira R (2017) Review of the ecotoxicological effects of emerging contaminants to soil biota. J Environ Sci Health A Tox Hazard Subst Environ Eng 52:992–1007.  https://doi.org/10.1080/10934529.2017.1328946 CrossRefGoogle Scholar
  59. Gómez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 240:40–47.  https://doi.org/10.1006/jcis.2001.7579 CrossRefGoogle Scholar
  60. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305.  https://doi.org/10.1007/b13533 CrossRefGoogle Scholar
  61. Gunjakar JL, More AM, Shinde VR, Lokhande CD (2008) Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J Alloys Compd 465:468–473.  https://doi.org/10.1016/j.jallcom.2007.10.130 CrossRefGoogle Scholar
  62. Guo SJ, Dong SJ (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends Anal Chem 28:96–109.  https://doi.org/10.1016/j.trac.2008.10.014 CrossRefGoogle Scholar
  63. Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496.  https://doi.org/10.1023/b:jmsm.0000021126.32934.20 CrossRefGoogle Scholar
  64. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573.  https://doi.org/10.1016/j.biomaterials.2004.05.022 CrossRefGoogle Scholar
  65. Hamoudeh M, Faraj AA, Canet-Soulas E, Bessueille F, Léonard D, Fessi H (2007) Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm 338:248–257.  https://doi.org/10.1016/j.ijpharm.2007.01.023 CrossRefGoogle Scholar
  66. Hasanzadeh R, Moghadam PN, Bahri-Laleh N, Sillanpää M (2017) Effective removal of toxic metal ions from aqueous solutions: 2-bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4 nanoparticles. J Colloid Interface Sci 490:727–746.  https://doi.org/10.1016/j.jcis.2016.11.098 CrossRefGoogle Scholar
  67. Hassani A, Celikdag G, Eghbali P, Sevim M, Karaca S, Metin O (2018) Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem 40:841–852.  https://doi.org/10.1016/j.ultsonch.2017.08.026 CrossRefGoogle Scholar
  68. He L, Zhang H, Fan H, Jiang X, Zhao W, Xiang GQ (2018) Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for vanadium(V) detection in mineral water samples. Spectrochim Acta A 189:51–56.  https://doi.org/10.1016/j.saa.2017.08.010 CrossRefGoogle Scholar
  69. Hirokawa Y et al (2009) Hepatic lesions: improved image quality and detection with the periodically rotated overlapping parallel lines with enhanced reconstruction technique-evaluation of SPIO-enhanced T2-weighted MR images. Radiology 251:388–397.  https://doi.org/10.1148/radiol.2512081360 CrossRefGoogle Scholar
  70. Hirsch-Ernst K, Marx-Stölting P, Moeller T, Pfeil R, Banasiak U (2009) Current issues in pesticide exposure and health risk-risk assessment of multiple residues and endocrine disrupting pesticides. Toxicol Lett 189:S30.  https://doi.org/10.1016/j.toxlet.2009.06.055 CrossRefGoogle Scholar
  71. Hou Y, Kondoh H, Shimojo M, Sako EO, Ozaki N, Kogure T, Ohta T (2005) Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite. J Phys Chem B 109:4845–4852.  https://doi.org/10.1021/jp0476646 CrossRefGoogle Scholar
  72. Hu YF, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2012a) Selective and sensitive molecularly imprinted sol-gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au-multi-walled carbon nanotubes-chitosan. J Solid State Electrochem 16:857–867.  https://doi.org/10.1007/s10008-011-1434-4 CrossRefGoogle Scholar
  73. Hu YF, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2012b) A sensitive and selective sensor-coated molecularly imprinted sol-gel film incorporating beta-cyclodextrin-multi-walled carbon nanotubes and cobalt nanoparticles-chitosan for oxacillin determination. Surf Interface Anal 44:334–341.  https://doi.org/10.1002/sia.3807 CrossRefGoogle Scholar
  74. Hua Y, Xiao J, Zhang Q, Cui C, Wang C (2018) Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes. Nanoscale Res Lett 13:99.  https://doi.org/10.1186/s11671-018-2476-7 CrossRefGoogle Scholar
  75. Issadore D et al (2012) Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med 4:141ra92.  https://doi.org/10.1126/scitranslmed.3003747 CrossRefGoogle Scholar
  76. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295.  https://doi.org/10.1016/S0021-9797(03)00511-3 CrossRefGoogle Scholar
  77. Jadhav SV, Nikam DS, Khot VM, Mali SS, Hong CK, Pawar SH (2015) PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application. Mater Charact 102:209–220.  https://doi.org/10.1016/j.matchar.2015.03.001 CrossRefGoogle Scholar
  78. Jang M et al (2014a) Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean J Radiol 15:411–422.  https://doi.org/10.3348/kjr.2014.15.4.411 CrossRefGoogle Scholar
  79. Jang S-C et al (2014b) Removal of radioactive cesium using prussian blue magnetic nanoparticles. Nanomaterials 4:894–901.  https://doi.org/10.3390/nano4040894 CrossRefGoogle Scholar
  80. Jia J et al (2016) Magnet bioreporter device for ecological toxicity assessment on heavy metal contamination of coal cinder sites. Sensors Actuators B Chem 222:290–299.  https://doi.org/10.1016/j.snb.2015.08.110 CrossRefGoogle Scholar
  81. Jiang B, Huang WE, Li G (2016) Construction of a bioreporter by heterogeneously expressing a Vibrio natriegens recA::luxCDABE fusion in Escherichia coli, and genotoxicity assessments of petrochemical-contaminated groundwater in northern China. Environ Sci: Processes Impacts 18:751–759.  https://doi.org/10.1039/c6em00120c CrossRefGoogle Scholar
  82. Jiang B et al (2017) A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere 184:384–392.  https://doi.org/10.1016/j.chemosphere.2017.05.159 CrossRefGoogle Scholar
  83. Jin L, Zhao X, Qian X, Dong M (2018a) Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J Colloid Interface Sci 509:245–253.  https://doi.org/10.1016/j.jcis.2017.09.002 CrossRefGoogle Scholar
  84. Jin N, Semple KT, Jiang L, Luo C, Zhang D, Martin FL (2018b) Spectrochemical analyses of growth phase-related bacterial responses to low (environmentally-relevant) concentrations of tetracycline and nanoparticulate silver. Analyst 143:768–776.  https://doi.org/10.1039/c7an01800b CrossRefGoogle Scholar
  85. Joly L, Ybert C, Trizac E, Bocquet L (2004) Hydrodynamics within the electric double layer on slipping surfaces. Phys Rev Lett 93:257805.  https://doi.org/10.1103/PhysRevLett.93.257805 CrossRefGoogle Scholar
  86. Jung KW, Choi BH, Ahn KH, Lee SH (2017a) Synthesis of a novel magnetic Fe3O4/γ-Al2O3 hybrid composite using electrode-alternation technique for the removal of an azo dye. Appl Surf Sci 423:383–393.  https://doi.org/10.1016/j.apsusc.2017.06.172 CrossRefGoogle Scholar
  87. Jung KW, Lee S, Lee YJ (2017b) Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Bioresour Technol 245:751–759.  https://doi.org/10.1016/j.biortech.2017.09.035 CrossRefGoogle Scholar
  88. Justino CIL, Rocha-Santos TA, Duarte AC (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal Chem 29:1172–1183.  https://doi.org/10.1016/j.trac.2010.07.008 CrossRefGoogle Scholar
  89. Kakavandi B, Esrafili A, Mohseni-Bandpi A, Jonidi JA, Rezaei KR (2014) Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. Water Sci Technol 69:147–155.  https://doi.org/10.2166/wst.2013.568 CrossRefGoogle Scholar
  90. Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed Eng 50:1980–1994.  https://doi.org/10.1002/anie.201002969 CrossRefGoogle Scholar
  91. Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959.  https://doi.org/10.1021/es402205q CrossRefGoogle Scholar
  92. Khollam YB, Dhage SR, Potdar HS, Deshpande SB, Bakare PP, Kulkarni SD, Date SK (2002) Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders. Mater Lett 56:571–577.  https://doi.org/10.1016/S0167-577X(02)00554-2 CrossRefGoogle Scholar
  93. Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617–1627.  https://doi.org/10.1021/cm021349j CrossRefGoogle Scholar
  94. Kim DH et al (2006) Surface-modified magnetite nanoparticles for hyperthermia: preparation, characterization and and cytotoxicity studies. Curr Appl Phys 6:e242–e246.  https://doi.org/10.1016/j.cap.2006.01.048 CrossRefGoogle Scholar
  95. King JG, Williams W, Wilkinson CDW, McVitie S, Chapman JN (1996) Magnetic properties of magnetite arrays produced by the method of electron beam lithography. Geophys Res Lett 23:2847–2850.  https://doi.org/10.1029/96gl01371 CrossRefGoogle Scholar
  96. Ko S et al (2017) Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation. J Nanopart Res 19:132.  https://doi.org/10.1007/s11051-017-3826-6 CrossRefGoogle Scholar
  97. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14:15977–16009.  https://doi.org/10.3390/ijms140815977 CrossRefGoogle Scholar
  98. Kong L, Gana X, bin Ahmad AL, Hamed BH, Evarts ER, Ooi B, Lim J (2012) Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal. Chem Eng J 197:350–358.  https://doi.org/10.1016/j.cej.2012.05.019 CrossRefGoogle Scholar
  99. Kouassi GK, Irudayaraj J (2006) Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal Chem 78:3234–3241.  https://doi.org/10.1021/ac051621j CrossRefGoogle Scholar
  100. Kuang H et al (2013) A one-step homogeneous sandwich immunosensor for Salmonella detection based on magnetic nanoparticles (MNPs) and quantum dots (QDs). Int J Mol Sci 14:8603–8610.  https://doi.org/10.3390/ijms14048603 CrossRefGoogle Scholar
  101. Lai J et al (2005) Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. J Phys Chem B 109:15–18.  https://doi.org/10.1021/jp0457702 CrossRefGoogle Scholar
  102. Latifeh F, Yamini Y, Seidi S (2016) Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution. Environ Sci Pollut Res 23:4411–4421.  https://doi.org/10.1007/s11356-015-5664-3 CrossRefGoogle Scholar
  103. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110.  https://doi.org/10.1021/cr068445e CrossRefGoogle Scholar
  104. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Delivery 11:1449–1470.  https://doi.org/10.1517/17425247.2014.924501 CrossRefGoogle Scholar
  105. Lecommandoux S, Sandre O, Chécot F, Perzynski R (2006) Smart hybrid magnetic self-assembled micelles and hollow capsules. Prog Solid State Chem 34:171–179.  https://doi.org/10.1016/j.progsolidstchem.2005.11.050 CrossRefGoogle Scholar
  106. Lehmann AD et al (2010) Fluorescent-magnetic hybrid nanoparticles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. Small 6:753–762.  https://doi.org/10.1002/smll.200901770 CrossRefGoogle Scholar
  107. Li Y et al (2011) Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo. Int J Nanomedicine 6:2805–2819.  https://doi.org/10.2147/ijn.s24596 CrossRefGoogle Scholar
  108. Li C, Dai P, Rao X, Shao L, Cheng G, He P, Fang Y (2015) An ultra-sensitive colorimetric Hg2+-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease. Talanta 132:463–468.  https://doi.org/10.1016/j.talanta.2014.09.037 CrossRefGoogle Scholar
  109. Li CY, Ma XG, Zhang XJ, Wang R, Li X, Liu QJ (2017a) Preparation of magnetic molecularly imprinted polymer nanoparticles by surface imprinting by a sol-gel process for the selective and rapid removal of di-(2-ethylhexyl) phthalate from aqueous solution. J Sep Sci 40:1621–1628.  https://doi.org/10.1002/jssc.201601190 CrossRefGoogle Scholar
  110. Li H, Martin FL, Zhang D (2017b) Quantification of chemotaxis-related alkane accumulation in Acinetobacter baylyi using Raman microspectroscopy. Anal Chem 89(7):3909–3918.  https://doi.org/10.1021/acs.analchem.6b02297 CrossRefGoogle Scholar
  111. Li H, Cui L, Martin FL, Zhang D (2017c) Diagnose pathogens in drinking water via magnetic surface-enhanced Raman scattering (SERS) assay. Mater Today Proceed 4(1):25–31.  https://doi.org/10.1016/j.matpr.2017.01.189 CrossRefGoogle Scholar
  112. Liang Y-Y, Zhang L-M, Jiang W, Li W (2007) Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation. Chemphyschem 8:2367–2372.  https://doi.org/10.1002/cphc.200700359 CrossRefGoogle Scholar
  113. Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8:1683–1692.  https://doi.org/10.1002/smll.201102400 CrossRefGoogle Scholar
  114. Limbach LK, Bereiter R, Müller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833.  https://doi.org/10.1021/es800091f CrossRefGoogle Scholar
  115. Lin P-C, Chou P-H, Chen S-H, Liao H-K, Wang K-Y, Chen Y-J, Lin C-C (2006) Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2:485–489.  https://doi.org/10.1002/smll.200500387 CrossRefGoogle Scholar
  116. Lin F-h, Chen W, Liao Y-H, R-a D, Li Y (2011a) Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M=Ag, Au, Pt, Pd) heterostructures. Nano Res 4:1223–1232.  https://doi.org/10.1007/s12274-011-0173-2 CrossRefGoogle Scholar
  117. Lin Y-W, Huang C-C, Chang H-T (2011b) Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136:863–871.  https://doi.org/10.1039/c0an00652a CrossRefGoogle Scholar
  118. Lin Z et al (2015) Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting. Bioresour Technol 190:82–88.  https://doi.org/10.1016/j.biortech.2015.04.068 CrossRefGoogle Scholar
  119. Liu X-M, Yang G, Fu S-Y (2007) Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route. Mater Sci Eng C 27:750–755.  https://doi.org/10.1016/j.msec.2006.07.026 CrossRefGoogle Scholar
  120. Liu H, Guo J, Jin L, Yang W, Wang C (2008a) Fabrication and functionalization of dendritic poly(amidoamine)-immobilized magnetic polymer composite microspheres. J Phys Chem B 112:3315–3321.  https://doi.org/10.1021/jp077465x CrossRefGoogle Scholar
  121. Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2008b) Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J Control Release 126:228–236.  https://doi.org/10.1016/j.jconrel.2007.12.006 CrossRefGoogle Scholar
  122. Liu Z, Yang H, Zhang H, Huang C, Li L (2012) Oil-field wastewater purification by magnetic separation technique using a novel magnetic nanoparticle. Cryogenics 52:699–703.  https://doi.org/10.1016/j.cryogenics.2012.05.015 CrossRefGoogle Scholar
  123. Liu EL et al (2017) Preparation of diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions. New J Chem 41:7739–7750.  https://doi.org/10.1039/c7nj02177a CrossRefGoogle Scholar
  124. López C, Cruz-Izquierdo Á, Picó EA, García-Bárcena T, Villarroel N, Llama MJ, Serra JL (2014) Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants. Front Chem 2:72.  https://doi.org/10.3389/fchem.2014.00072 CrossRefGoogle Scholar
  125. Lüdtke-Buzug K, Biederer S, Sattel TF, Knopp T, Buzug TM (2010) Particle-size distribution of dextran- and carboxydextran-coated superparamagnetic nanoparticles for magnetic particle imaging. In: Dössel O, Schlegel WC (eds) World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany: Vol. 25/8 Micro- and Nanosystems in Medicine, Active Implants, Biosensors. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 226–229.  https://doi.org/10.1007/978-3-642-03887-7_63 Google Scholar
  126. Lunov O et al (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022.  https://doi.org/10.1016/j.biomaterials.2010.08.003 CrossRefGoogle Scholar
  127. Lutz J-F, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7:3132–3138.  https://doi.org/10.1021/bm0607527 CrossRefGoogle Scholar
  128. Ma D, Guan J, Dénommée S, Enright G, Veres T, Simard B (2006) Multifunctional nano-architecture for biomedical applications. Chem Mater 18:1920–1927.  https://doi.org/10.1021/cm052067x CrossRefGoogle Scholar
  129. Ma L, Liu Y, Zhang J, Yang Q, Li G, Zhang D (2018) Impacts of irrigation water sources and geochemical conditions on vertical distribution of pharmaceutical and personal care products (PPCPs) in the vadose zone soils. Sci Total Environ 628:1148–1156.  https://doi.org/10.1016/j.scitotenv.2018.01.168 CrossRefGoogle Scholar
  130. Magnet C et al (2017) Adsorption of nickel ions by oleate-modified magnetic iron oxide nanoparticles. Environ Sci Pollut Res 24:7423–7435.  https://doi.org/10.1007/s11356-017-8391-0 CrossRefGoogle Scholar
  131. Mahtab F et al (2011) Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization and exploration of their biological applications. Adv Funct Mater 21:1733–1740.  https://doi.org/10.1002/adfm.201002572 CrossRefGoogle Scholar
  132. Mao X, Xu J, Cui H (2016) Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 8:814–841.  https://doi.org/10.1002/wnan.1400 CrossRefGoogle Scholar
  133. Marques RFC et al (2008) Electro-precipitation of Fe3O4 nanoparticles in ethanol. J Magn Magn Mater 320:2311–2315.  https://doi.org/10.1016/j.jmmm.2008.04.165 CrossRefGoogle Scholar
  134. Mathur S, Barth S, Werner U, Hernandez-Ramirez F, Romano-Rodriguez A (2008) Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater 20:1550–1554.  https://doi.org/10.1002/adma.200701448 CrossRefGoogle Scholar
  135. Megens M, Prins M (2005) Magnetic biochips: a new option for sensitive diagnostics. J Magn Magn Mater 293:702–708.  https://doi.org/10.1016/j.jmmm.2005.02.046 CrossRefGoogle Scholar
  136. Michael L, Florence L, Valentin-Adrian M, Marie-Geneviève B, François G, Claire W, Florence G (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnol 21:395103.  https://doi.org/10.1088/0957-4484/21/39/395103 CrossRefGoogle Scholar
  137. Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14.  https://doi.org/10.1016/j.partic.2016.06.001 CrossRefGoogle Scholar
  138. Moon J-W, Roh Y, Lauf RJ, Vali H, Yeary LW, Phelps TJ (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbiol Methods 70:150–158.  https://doi.org/10.1016/j.mimet.2007.04.012 CrossRefGoogle Scholar
  139. Moon J-W et al (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031.S.  https://doi.org/10.1007/s10295-010-0749-y CrossRefGoogle Scholar
  140. Morales MP et al (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11:3058–3064.  https://doi.org/10.1021/cm991018f CrossRefGoogle Scholar
  141. Naidek KP et al (2011) Structure and morphology of spinel MFe2O4 (M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes. J Colloid Interface Sci 358:39–46.  https://doi.org/10.1016/j.jcis.2011.03.001 CrossRefGoogle Scholar
  142. Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 85:71–92.  https://doi.org/10.1016/j.molcatb.2012.08.010 CrossRefGoogle Scholar
  143. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444.  https://doi.org/10.1007/s11157-013-9320-4 CrossRefGoogle Scholar
  144. Osaka T, Matsunaga T, Nakanishi T, Arakaki A, Niwa D, Iida H (2006) Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem 384:593–600.  https://doi.org/10.1007/s00216-005-0255-7 CrossRefGoogle Scholar
  145. Pena RC, Cornejo L, Bertotti M (2017) Removal of heavy-metal ions from wastewater samples using magnetic nanoparticles modified with ethylenediaminetetraacetic acid. Desalin Water Treat 84:271–278.  https://doi.org/10.5004/dwt.2017.21093 CrossRefGoogle Scholar
  146. Piao Y et al (2008) Wrap-bake-peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 7:242–247.  https://doi.org/10.1038/nmat2118 CrossRefGoogle Scholar
  147. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011.  https://doi.org/10.1039/b708461g CrossRefGoogle Scholar
  148. Pouran SR, Raman AAA, Daud WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35.  https://doi.org/10.1016/j.jclepro.2013.09.013 CrossRefGoogle Scholar
  149. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon 50:4209–4219.  https://doi.org/10.1016/j.carbon.2012.05.002 CrossRefGoogle Scholar
  150. Qadri S, Ganoe A, Haik Y (2009) Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J Hazard Mater 169:318–323.  https://doi.org/10.1016/j.jhazmat.2009.03.103 CrossRefGoogle Scholar
  151. Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496.  https://doi.org/10.1007/s11051-005-9011-3 CrossRefGoogle Scholar
  152. Qiao H et al (2009) Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250:821–829.  https://doi.org/10.1148/radiol.2503080205 CrossRefGoogle Scholar
  153. Qiu F, Wang X, Zhang X, Liu H, Liu S, Yeung KL (2009) Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chem Eng J 147:316–322.  https://doi.org/10.1016/j.cej.2008.11.034 CrossRefGoogle Scholar
  154. Raeiatbin P, Acikel YS (2017) Removal of tetracycline by magnetic chitosan nanoparticles from medical wastewaters. Desalin Water Treat 73:380–388.  https://doi.org/10.5004/dwt.2017.20421 CrossRefGoogle Scholar
  155. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878.  https://doi.org/10.1021/cr300068p CrossRefGoogle Scholar
  156. Rishton SA et al (1997) Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron Eng 35:249–252.  https://doi.org/10.1016/S0167-9317(96)00107-4 CrossRefGoogle Scholar
  157. Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36.  https://doi.org/10.1016/j.trac.2014.06.016 CrossRefGoogle Scholar
  158. Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7–28.  https://doi.org/10.1007/s00604-012-0824-3 CrossRefGoogle Scholar
  159. Rogers KR, Williams LR (1995) Biosensors for environmental monitoring: a regulatory perspective. Trends Anal Chem 14:289–294.  https://doi.org/10.1016/0165-9936(95)97054-5 CrossRefGoogle Scholar
  160. Ruiz-Hernández E, Baeza A, Vallet-Regí M (2011) Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5:1259–1266.  https://doi.org/10.1021/nn1029229 CrossRefGoogle Scholar
  161. Sadati Behbahani N, Rostamizadeh K, Yaftian MR, Zamani A, Ahmadi H (2014) Covalently modified magnetite nanoparticles with PEG: preparation and characterization as nano-adsorbent for removal of lead from wastewater. J Environ Health Sci Eng 12:103.  https://doi.org/10.1186/2052-336x-12-103 CrossRefGoogle Scholar
  162. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61:4625–4633.  https://doi.org/10.1016/j.ces.2006.02.032 CrossRefGoogle Scholar
  163. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252.  https://doi.org/10.1016/j.trac.2009.08.002 CrossRefGoogle Scholar
  164. Seo WS et al (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971–976.  https://doi.org/10.1038/nmat1775 CrossRefGoogle Scholar
  165. Shen J, Zhu Y, Yang X, Zong J, Li C (2013) Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling. Langmuir 29:690–695.  https://doi.org/10.1021/la304048v CrossRefGoogle Scholar
  166. Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410.  https://doi.org/10.1016/j.jmmm.2014.10.137 CrossRefGoogle Scholar
  167. Shrivas K, Ghosale A, Nirmalkar N, Srivastava A, Singh SK, Shinde SS (2017) Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles. Environ Sci Pollut Res Int 24:24980–24988.  https://doi.org/10.1007/s11356-017-0159-z CrossRefGoogle Scholar
  168. Springer V, Pecini E, Avena M (2016) Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions. J Environ Chem Eng 4:3882–3890.  https://doi.org/10.1016/j.jece.2016.08.026 CrossRefGoogle Scholar
  169. Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632.  https://doi.org/10.1016/j.watres.2013.02.039 CrossRefGoogle Scholar
  170. Tang Y et al (2013) Highly sensitive and rapid detection of pseudomonas aeruginosa based on magnetic enrichment and magnetic separation. Theranostics 3:85–92.  https://doi.org/10.7150/thno.5588 CrossRefGoogle Scholar
  171. Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852.  https://doi.org/10.1021/ar200084x CrossRefGoogle Scholar
  172. Tomitaka A, Jeun M, Bae S, Takemura Y (2011) Evaluation of magnetic and thermal properties of ferrite nanoparticles for biomedical applications. J Magn 16:164–168.  https://doi.org/10.4283/jmag.2011.16.2.164 CrossRefGoogle Scholar
  173. Torabian A, Panahi HA, Nabi Bid Hendi GR, Mehrdadi N (2014) Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water. J Environ Health Sci Eng 12:105.  https://doi.org/10.1186/2052-336x-12-105 CrossRefGoogle Scholar
  174. Tran PH-L, Tran TT-D, Vo TV, Lee B-J (2012) Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch Pharm Res 35:2045–2061.  https://doi.org/10.1007/s12272-012-1203-7 CrossRefGoogle Scholar
  175. Ul-Islam M et al (2017) Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants. Environ Sci Pollut Res 24:12713–12722.  https://doi.org/10.1007/s11356-017-8765-3 CrossRefGoogle Scholar
  176. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522.  https://doi.org/10.1038/nrmicro2392 CrossRefGoogle Scholar
  177. Veintemillas-Verdaguer S et al (2007) Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis. J Magn Magn Mater 311:120–124.  https://doi.org/10.1016/j.jmmm.2006.10.1200 CrossRefGoogle Scholar
  178. Viota JL, Delgado AV, Arias JL, Durán JDG (2008) Study of the magnetorheological response of aqueous magnetite suspensions stabilized by acrylic acid polymers. J Colloid Interface Sci 324:199–204.  https://doi.org/10.1016/j.jcis.2008.05.029 CrossRefGoogle Scholar
  179. Wan Y, Zhang D, Hou BR (2010) Determination of sulphate-reducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modification-free quartz crystal microbalance. Biosens Bioelectron 25:1847–1850.  https://doi.org/10.1016/j.bios.2009.12.028 CrossRefGoogle Scholar
  180. Wan Y, Sun Y, Qi P, Wang P, Zhang D (2014) Quaternized magnetic nanoparticles–fluorescent polymer system for detection and identification of bacteria. Biosens Bioelectron 55:289–293.  https://doi.org/10.1016/j.bios.2013.11.080 CrossRefGoogle Scholar
  181. Wang L et al (2005a) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15:1821–1832.  https://doi.org/10.1039/b501375e CrossRefGoogle Scholar
  182. Wang W et al (2005b) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601.  https://doi.org/10.1021/jp0543429 CrossRefGoogle Scholar
  183. Wang Y, Li Y, Rong C, Liu JP (2007) Sm-Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology 18:465701.  https://doi.org/10.1088/0957-4484/18/46/465701 CrossRefGoogle Scholar
  184. Wang L et al (2010a) Bright green upconversion fluorescence of Yb3+, Er3+-codoped NaYF4 nanocrystals. J Nanosci Nanotechnol 10:1825–1828.  https://doi.org/10.1166/jnn.2010.2085 CrossRefGoogle Scholar
  185. Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H (2010b) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17:526–533.  https://doi.org/10.1016/j.ultsonch.2009.11.001 CrossRefGoogle Scholar
  186. Wang L, Huang F, Cai G, Yao L, Zhang H, Lin J (2017a) An electrochemical aptasensor using coaxial capillary with magnetic nanoparticle, urease catalysis and pcb electrode for rapid and sensitive detection of Escherichia coli O157:H7. Nanotheranostics 1:403–414.  https://doi.org/10.7150/ntno.22079 CrossRefGoogle Scholar
  187. Wang L, Yao M, Fang C, Yao X (2017b) A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3O4 @SiO2 magnetic nanoparticles. Luminescence 32:1039–1044.  https://doi.org/10.1002/bio.3288 CrossRefGoogle Scholar
  188. Wang M et al (2017c) Hydrothermal synthesis of Sm-doped Bi2MoO6 and its high photocatalytic performance for the degradation of rhodamine B. J Alloys Compd 728:739–746.  https://doi.org/10.1016/j.jallcom.2017.09.066 CrossRefGoogle Scholar
  189. Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S (2018) Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine 13:1159–1178.  https://doi.org/10.2147/ijn.s150336 CrossRefGoogle Scholar
  190. Wu J-H, Ko SP, Liu H-L, Kim S, Ju J-S, Kim YK (2007) Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater Lett 61:3124–3129.  https://doi.org/10.1016/j.matlet.2006.11.032 CrossRefGoogle Scholar
  191. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397.  https://doi.org/10.1007/s11671-008-9174-9 CrossRefGoogle Scholar
  192. Wu F, Zhou Z, Su J, Wei L, Yuan W, Jin T (2013) Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res Lett 8:197.  https://doi.org/10.1186/1556-276x-8-197 CrossRefGoogle Scholar
  193. Xu QH (2012) SERS under magnetic control. Ann Phys 524:A161–A162.  https://doi.org/10.1002/andp.201200754 CrossRefGoogle Scholar
  194. Xu J, Luu L, Tang YZ (2017a) Phosphate removal using aluminum-doped magnetic nanoparticles. Desalin Water Treat 58:239–248.  https://doi.org/10.5004/dwt.2017.0356 CrossRefGoogle Scholar
  195. Xu L, Dong S, Hao J, Cui J, Hoffmann H (2017b) Surfactant-modified ultrafine gold nanoparticles with magnetic responsiveness for reversible convergence and release of biomacromolecules. Langmuir 33:3047–3055.  https://doi.org/10.1021/acs.langmuir.6b04591 CrossRefGoogle Scholar
  196. Yang J-C, Yin X-B (2017) CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci Rep 7:40955.  https://doi.org/10.1038/srep40955 CrossRefGoogle Scholar
  197. Yang X, Xiao FB, Lin HW, Wu F, Chen DZ, Wu ZY (2013) A novel H2O2 biosensor based on Fe3O4-Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets-Nafion film modified screen-printed carbon electrode. Electrochim Acta 109:750–755.  https://doi.org/10.1016/j.electacta.2013.08.011 CrossRefGoogle Scholar
  198. Yildiz I (2016) Applications of magnetic nanoparticles in biomedical separation and purification. Nanotechnol Rev 5:331–340.  https://doi.org/10.1515/ntrev-2015-0012 CrossRefGoogle Scholar
  199. Yuan JJ, Armes SP, Takabayashi Y, Prassides K, Leite CAP, Galembeck F, Lewis AL (2006) Synthesis of biocompatible poly[2-(methacryloyloxy)ethyl phosphorylcholine]-coated magnetite nanoparticles. Langmuir 22:10989–10993.  https://doi.org/10.1021/la061834j CrossRefGoogle Scholar
  200. Yuan WE, Wu F, Geng Y, Xu SL, Jin T (2007) Preparation of dextran glassy particles through freezing-induced phase separation. Int J Pharm 339:76–83.  https://doi.org/10.1016/j.ijpharm.2007.02.018 CrossRefGoogle Scholar
  201. Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind Eng Chem Res 52:14944–14954.  https://doi.org/10.1021/ie401971w CrossRefGoogle Scholar
  202. Zhang XQ, Guo Q, Cui DX (2009) Recent advances in nanotechnology applied to biosensors. Sensors 9:1033–1053.  https://doi.org/10.3390/s90201033 CrossRefGoogle Scholar
  203. Zhang D et al (2011) Functionalization of whole-cell bacterial reporters with magnetic nanoparticles. Microb Biotechnol 4:89–97.  https://doi.org/10.1111/j.1751-7915.2010.00228.x CrossRefGoogle Scholar
  204. Zhang D, He Y, Wang Y, Wang H, Wu L, Ares E, Huang WE (2012) Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microb Biotechnol 5(1):87–97.  https://doi.org/10.1111/j.1751-7915.2011.00301.x CrossRefGoogle Scholar
  205. Zhang D, Ding A, Cui S, Hu C, Thornton SF, Dou J, Sun Y, Huang WE (2013) Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Res 47:1191–1200.  https://doi.org/10.1016/j.watres.2012.11.038 CrossRefGoogle Scholar
  206. Zhang P, Lo I, O'Connor D, Pehkonen S, Cheng HF, Hou DY (2017) High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J Colloid Interface Sci 508:39–48.  https://doi.org/10.1016/j.jcis.2017.08.025 CrossRefGoogle Scholar
  207. Zheng X, He L, Duan Y, Jiang X, Xiang G, Zhao W, Zhang S (2014) Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J Chromatogr A 1358:39–45.  https://doi.org/10.1016/j.chroma.2014.06.078 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Environmental EngineeringUniversity of Science & Technology BeijingBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Resource-oriented Treatment of Industrial PollutantsUniversity of Science & Technology BeijingBeijingPeople’s Republic of China
  3. 3.School of EnvironmentTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.State Key Laboratory of Environmental Simulation and Pollution ControlTsinghua UniversityBeijingPeople’s Republic of China
  5. 5.Research Institute for Environmental Innovation (Suzhou), TsinghuaSuzhouPeople’s Republic of China

Personalised recommendations