Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 31, pp 31071–31090 | Cite as

Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India

  • Shivani
  • Ranu Gadi
  • Sudhir Kumar Sharma
  • Tuhin Kumar Mandal
  • Ravi Kumar
  • Sharma Mona
  • Sachin Kumar
  • Sanchit Kumar
Research Article
  • 78 Downloads

Abstract

The study presents the spatial and temporal variation of fine ambient aerosols (PM2.5) over National Capital Region (NCR), India, during January to June 2016. The investigation includes three sampling sites, one in Delhi and two in the adjoining states of Delhi (Uttar Pradesh and Haryana), across NCR, India. The average PM2.5 concentration was highest for Delhi (128.5 ± 51.5 μg m−3) and lowest for Mahendragarh, Haryana (74.5 ± 28.7 μg m−3), during the study period. Seasonal variation was similar for all the sites with highest concentration during winter and lowest in summer. PM2.5 samples were analysed for organic compounds using gas chromatograph (GC). The concentration of three organic compound classes, n-alkanes (C11–C35), polycyclic aromatic hydrocarbons (PAHs), and phthalates, present in PM2.5 samples has been reported. Diagnostic ratios for n-alkanes demonstrated that biogenic emissions were dominant over Mahendragarh while major contributions were observed from petrogenic emissions over Delhi and Modinagar, Uttar Pradesh. Molecular diagnostic ratios were calculated to distinguish between different sources of PAHs, which revealed that the fossil fuel combustion (diesel and gasoline emissions), traffic emissions, and biomass burning are the major source contributors. Health risk associated with human exposure of phthalates and PAHs was also assessed as daily intake (DI, ng kg−1 day−1) and lung cancer risk, respectively. Backward trajectory analysis explained the local, regional, and long-range transport routes of PM2.5 for all sites. Principal component analysis (PCA) results summarized that the vehicular emissions, biomass burning, and plastic burning were the major sources of the PAHs and phthalates over the sampling sites.

Keywords

n-Alkanes PAHs Phthalates Daily intake Lung cancer risk Trajectories 

Abbreviations

NOAA

National Oceanic and Atmospheric Administration

READY

Real time Environmental Applications and Display System

USEPA

United States Environmental Protection Agency

CPCB

Central Pollution Control Board

NASA

National Aeronautics and Space Administration

NAAQS

National Ambient Air Quality Standards

Notes

Acknowledgements

The authors are grateful to Prof. Nupur Prakash, Vice Chancellor, IGDTUW, Delhi, for her consistent guidance and inspiration. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.

Funding information

The work was supported by the Department of Science and Technology, Government of India. First author also acknowledges the award of JRF from DST Research grant.

References

  1. Alatriste-Mondragon F, Iranpour R, Ahring BK (2003) Toxicity of di-(2-ethylhexyl) phthalate on the anaerobic digestion of wastewater sludge. Water Res 37(6):1260–1269CrossRefGoogle Scholar
  2. Bi XH, Simoneit BRT, Sheng GY et al (2008) Composition and major sources of organic compounds in urban aerosols. Atmos Res 88:256–265CrossRefGoogle Scholar
  3. Bian Q, Alharbi B, Collett JJ et al (2016) Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmos Env 137:186–198CrossRefGoogle Scholar
  4. Bisht DS, Dumka UC, Kaskaoutis DG et al (2015) Carbonaceous aerosols and pollutants over Delhi urban environment: temporal evolution, source apportionment and radiative forcing. Sci Total Environ 521:431–445CrossRefGoogle Scholar
  5. Bisht DS, Tiwari S, Rao PSP et al (2016) Tethered balloon-born and ground-based measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci Total Environ 573:894–905CrossRefGoogle Scholar
  6. Bošnir J, Puntarić D, Škes I et al (2003) Migration of phthalates from plastic products to model solutions. Collegium Antropologicum 27(1):23–30Google Scholar
  7. Brauer M, Amann M, Burnett RT et al (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46:652–660CrossRefGoogle Scholar
  8. Budhavant K, Andersson A, Bosch C et al (2015) Apportioned contributions of PM2. 5 fine aerosol particles over the Maldives (northern Indian Ocean) from local sources vs long-range transport. Sci Total Environ 536:72–78CrossRefGoogle Scholar
  9. Buseck PR and Schwartz SE (2014). Tropospheric aerosols, reference module in earth systems and environmental sciences from Treatise on GeochemistryGoogle Scholar
  10. Caricchia AM, Chiavarini S, Pezza M (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos Env 33:3731–3738CrossRefGoogle Scholar
  11. Chowdhury Z, Zheng M, Schauer JJ et al (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophysical Res Atmospheres, 112(D15)Google Scholar
  12. Clark KE, David RM, Guinn R et al (2011) Modeling human exposure to phthalate esters: a comparison of indirect and biomonitoring estimation methods. Human Ecological Risk Assessment: An Int J 17(4):923–965CrossRefGoogle Scholar
  13. Cui L, Duo B, Zhang F et al (2018) Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure. Environmental Pollution  236:992-1003CrossRefGoogle Scholar
  14. Desdoits-Lethimonier C, Albert O, Le BB et al (2012) Human testis steroidogenesis is inhibited by phthalates. Human Reproduction 27(5):1451–1459CrossRefGoogle Scholar
  15. Dey S, Di Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38(May):1–5Google Scholar
  16. Draxler RR, Rolph GD (2003) HYSPLIT (hybrid single–particle lagrangian integrated trajectory) model. http://www.arl.noaa.gov/ready/hysplit4.html
  17. Dumka UC, Tiwari S, Kaskaoutis DG et al (2017) Assessment of PM2. 5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. J Atmospheric Chemistry 74(4):423–450CrossRefGoogle Scholar
  18. El Haddad I, Marchand N, Dron J et al (2009) Comprehensive primary particulate organic characterization of vehicular exhaust emissions in France. Atmos Env 43(39):6190–6198CrossRefGoogle Scholar
  19. EPA, December (2002) Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response. US Environmental Protection Agency, Washington, DC OSWER 9355:4-24 Google Scholar
  20. Fu PQ, Kawamura K, Pavuluri CM et al (2010) Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmospheric Chemistry Physics 10(6):2663–2689CrossRefGoogle Scholar
  21. Gadi R, Kulshrestha UC, Sarkar AK et al (2003) Emissions of SO2 and NOx from biofuels in India. Tellus B 55(3):787–795CrossRefGoogle Scholar
  22. Gawhane RD, Rao PSP, Budhavant KB et al (2017) Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India. Environ Sci Pollution Res 24(26):21065–21072CrossRefGoogle Scholar
  23. Ghude SD, Chate DM, Jena C et al (2016) Premature mortality in India due to PM2.5 and ozone exposure. Geeophys Res Lett 43:4650–4658CrossRefGoogle Scholar
  24. Giri B, Patel KS, Jaiswal NK et al (2013) Composition and sources of organic tracers in aerosol particles of industrial central India. Atmos Res 120:312–324CrossRefGoogle Scholar
  25. Guo H, Lee SC, Ho KF et al (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong-Kong. Atmos Env 37:5307–5317CrossRefGoogle Scholar
  26. Gupta S, Gadi R (2018) Temporal variation of phthalic acid esters (PAEs) in ambient atmosphere of Delhi. Bulletin Environ Contamination Toxicology:1–7Google Scholar
  27. Gupta S, Gadi R, Mandal TK et al (2017) Seasonal variations andsource profile of n-alkanes in particulate matter (PM10) at a heavy traffic site. Environ Monitoring Assessment 189:43CrossRefGoogle Scholar
  28. Gupta S, Gadi R, Sharma SK et al (2018) Characterization and source apportionment of organic compounds in PM 10 using PCA and PMF at a traffic hotspot of Delhi. Sustainable Cities and Society ​39:52-67CrossRefGoogle Scholar
  29. IPCC (1995) Climate Change 1994. Cambridge University Press New YorkGoogle Scholar
  30. Jacobson MC, Hansson HC, Noone KJ et al (2000) Organic atmospheric aerosols: review and state of the science. Reviews Geophysics 38(2):267–294CrossRefGoogle Scholar
  31. Jain S, Sharma SK, Choudhary N et al (2017a) Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX and PMF at an urban site of Delhi, India. Environ Sci Poll Res ​24(17):14637-14656CrossRefGoogle Scholar
  32. Jain S, Sharma SK, Mandal TK et al (2017b) Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37:107-118CrossRefGoogle Scholar
  33. Kavouras IG, Lawrence J, Koutrakis P et al (1999) Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source reconciliation and evaluation of sampling artifacts. Atmos Env 33:4977–4986CrossRefGoogle Scholar
  34. Kawanaka Y, Matsumoto E, Sakamoto K et al (2004) Size distributions of mutagenic compounds and mutagenicity in atmospheric particulate matter collected with a low-pressure cascade impactor. Atmos Environ 38:2125–2132CrossRefGoogle Scholar
  35. Kong S, Ji Y, Liu L et al (2012) Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China. Environ Pollution 170:161–168CrossRefGoogle Scholar
  36. Kong S, Ji Y, Liu L et al (2013) Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China. Atmos Environ 74:199–208CrossRefGoogle Scholar
  37. Kumar P, Gulia S, Harrison RM et al (2017) The influence of odd–even car trial on fine and coarse particles in Delhi. Environ Pollution 225:20–30CrossRefGoogle Scholar
  38. Lelieveld JO, Crutzen PJ, Ramanathan V et al (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506):1031–1036CrossRefGoogle Scholar
  39. Lenoir A, Cuvillier-Hot V, Devers S et al (2012) Ant cuticles: a trap for atmospheric phthalate contaminants. Sci Total Environ 441:209–212CrossRefGoogle Scholar
  40. Li Y, Wang J, Ren B et al (2018) The characteristics of atmospheric phthalates in Shanghai: a haze case study and human exposure assessment. Atmospheric Environ 178:80–86CrossRefGoogle Scholar
  41. Lodhi NK, Beegum SN, Singh S et al (2013) Aerosol climatology at Delhi in the western Indo-Gangetic Plain: microphysics, long-term trends, and source strengths. J Geophysical Res: Atmospheres 118(3):1361–1375Google Scholar
  42. Ma J, Chen LL, Guo Y et al (2014) Phthalate diesters in Airborne PM2. 5 and PM10 in a suburban area of Shanghai: seasonal distribution and risk assessment. Sci Total Environ 497:467–474CrossRefGoogle Scholar
  43. Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens. Greece. Chemosphere 59(5):593–604CrossRefGoogle Scholar
  44. Miyazaki Y, Aggrawal SG, Gupta PK et al (2009) Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J Geophys Res 114:D19206.  https://doi.org/10.1029/2009JD011790 CrossRefGoogle Scholar
  45. Monks PS, Granier C, Fuzzi S et al (2009) Atmospheric composition change–global and regional air quality. Atmospheric Environ 43(33):5268–5350CrossRefGoogle Scholar
  46. National Toxicology Program (NTP) (2005) Report on Carcinogens, eleventh ed. Public Health Service, US Department of Health and Human Services, Washington, DCGoogle Scholar
  47. Nisbet IC, Lagoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology Pharmacology 16(3):290–300CrossRefGoogle Scholar
  48. Norman M, Das SN, Pillai AG et al (2001) Influence of air mass trajectories on the chemical composition of precipitation in India. Atmospheric Environ 35(25):4223–4235CrossRefGoogle Scholar
  49. Pandey PK, Patel KS, Lenicek J et al (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India. Study of an urban industrial location in India. Environ Monit Assess 59:287–319CrossRefGoogle Scholar
  50. Pant N, Pant AB, Shukla M et al (2011) Environmental and experimental exposure of phthalate esters: the toxicological consequence on human sperm. Human Experimental Toxicology 30(6):507–514CrossRefGoogle Scholar
  51. Pant P, Shukla A, Kohl SD et al (2015) Characterization of ambient PM2. 5 at a pollution hotspot in New Delhi, India and inference of sources. Atmospheric Environ 109:178–189CrossRefGoogle Scholar
  52. Pavuluri CM, Kawamura K and Swaminathan T (2010) Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols. J Geophysical Res: Atmospheres: 115(D11)Google Scholar
  53. Percy KE, McQuattie CJ, Rebbeck JA (1994) Effects of air pollutants on epicuticular wax chemical composition. In: Air Pollutants and the Leaf Cuticle. Springer, Berlin, Heidelberg, pp 67–79CrossRefGoogle Scholar
  54. Perrino C, Tiwari S, Catrambone M et al (2011) Chemical characterization of atmospheric PM in Delhi, India during different periods of the year including Diwali festival. Atmos Pollut Res 2:418–427CrossRefGoogle Scholar
  55. Pope A, Burnett RT, Thun MJ et al (2002) Cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Lung Cancer 287 (9). Protection Agency, Washington, DC OSWER 9355.4–24Google Scholar
  56. Ram K, Sarin MM (2010) Statio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98CrossRefGoogle Scholar
  57. Ram K, Sarin MM, Sudheer AK et al (2012) Carbonaceous and Secondary Inorganic aerosols during wintertime fog and haze over urban sites in the Indo-gangetic plain. Aero Air Qual Res 12:359–370CrossRefGoogle Scholar
  58. Rana S, Kant Y, Dadhwal VK (2009) Diurnal and seasonal variation of spectral properties of aerosols over Dehradun, India. Aerosol Air Qual Res 9(1):32–49CrossRefGoogle Scholar
  59. Rodricks JV, Brett SM, Wrenn GC et al (1987) Significant risk decisions in federal regulatory agencies. Regulatory Toxicology Pharmacology 7(3):307–320CrossRefGoogle Scholar
  60. Rogge WF, Hildemann LM, Mazurek MA et al (1991) Sources of fine organic aerosol: 1. - charbroilers and meat cooking operations. Environ Sci Technol 25:1112–1125CrossRefGoogle Scholar
  61. Rogge WF, Hildemann LM, Mazurek MA et al (1993a) Sources of fine organic aerosol: 2. Noncatalyst and catalystequipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651CrossRefGoogle Scholar
  62. Rogge WF, Hildemann LM, Mazurek MA et al (1993b) Quantification of urban organic aerosols on a molecular level: identification, abundance and seasonal variation. Atmos Environ 27A:1309–1330CrossRefGoogle Scholar
  63. Rogge WF, Hildemann LM, Mazurek MA et al (1994) Sources of fine organic aerosol. 6. Cigaret smoke in the urban atmosphere. Environ Sci Technol 28(7):1375–1388CrossRefGoogle Scholar
  64. Sahu SK, Ohara T, Beig G (2015) Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India. Environ Res Letters 10:–095002CrossRefGoogle Scholar
  65. Sampath S, Selvaraj KK, Shanmugam G et al (2017) Evaluating spatial distribution and seasonal variation of phthalates using passive air sampling in southern India. Environ Pollution 221:407–417CrossRefGoogle Scholar
  66. Satsangi A, Pachauri T, Singla V et al (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21CrossRefGoogle Scholar
  67. Schauer JJ, Rogge WF, Hildemann LM et al (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855CrossRefGoogle Scholar
  68. Sen A, Abdelmaksoud AS, Ahammed YN et al (2017) Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmospheric Environ 154:200–224CrossRefGoogle Scholar
  69. Sharma SK, Mandal TK (2017) Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate 21:106–122CrossRefGoogle Scholar
  70. Sharma DN, Sawant AA, Uma R et al (2003) Preliminary chemical characterization of particle-phase organic compounds in New Delhi. India. Atmospheric Environ 37(30):4317–4323CrossRefGoogle Scholar
  71. Sharma H, Jain VK, Khan ZH (2007) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in the urban environment of Delhi. Chemosphere 66(2):302–310CrossRefGoogle Scholar
  72. Sharma SK, Mandal TK, Jain S et al (2016) Source apportionment of PM2.5 in Delhi, India using PMF model. Bulletin Environ Contamination Toxicology 97(2):286–293CrossRefGoogle Scholar
  73. Sharma SK, Agarwal P, Mandal TK et al (2017) Study on ambient air quality of megacity Delhi, India during odd–even strategy. MAPAN, 165 32(2):155CrossRefGoogle Scholar
  74. Shi W, Hu X, Zhang F et al (2012) Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters. Environ Sci Technol 46(3):1811–1818CrossRefGoogle Scholar
  75. Simoneit BRT (1989) Organic matter of the troposphere — V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J Atmos Chem 8:251–275CrossRefGoogle Scholar
  76. Simoneit BR, Mazurek MA (1982) Organic matter of the troposphere—II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environ 16(9):2139–2159CrossRefGoogle Scholar
  77. Simoneit BR, Cardoso JN, Robinson N (1991) An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the South Atlantic from about 30–70 S. Chemosphere 23(4):447–465CrossRefGoogle Scholar
  78. Simoneit BR, Medeiros PM, Didyk BM (2005) Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ Sci Technol 39(18):6961–6970CrossRefGoogle Scholar
  79. Singh S, Beegum SN (2013) Direct radiative effects of an unseasonal dust storm at a western Indo Gangetic Plain station Delhi in ultraviolet, shortwave, and longwave regions. Geophysical Res Letters 40(10):2444–2449CrossRefGoogle Scholar
  80. Singh AB, Pandit T, Dahiya P (2003) Changes in airborne pollen concentrations in Delhi, India. Grana 42:168–177CrossRefGoogle Scholar
  81. Singh DP, Gadi R, Mandal TK (2011) Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environ 45(40):7653–7663CrossRefGoogle Scholar
  82. Singla V, Pachauri T, Satsangi A et al (2012) Characterization and mutagenicity assessment of PM2. 5 and PM10 PAH at Agra, India. Polycyclic Aromatic Compounds 32(2):199–220CrossRefGoogle Scholar
  83. Tan JH, Guo SJ, Ma YL et al (2011) Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmos Res 102:91–98CrossRefGoogle Scholar
  84. Tiwari S, Pervez S, Cinzia P et al (2013) Chemical characterization of atmospheric particulate matter in Delhi, India, Part II: Source apportionment studies using PMF 3.0. Sustainable Environ Res 23(5):295–306Google Scholar
  85. Tiwari S, Tunved P, Hopke PK et al (2016) Observations of ambient trace gas and PM10 concentrations at Patna, Central Ganga Basin during 2013–2014: the influence of meteorological variables on atmospheric pollutants. Atmos Res 180:138–149CrossRefGoogle Scholar
  86. Tranfo G, Caporossi L, Paci E et al (2012) Urinary phthalate monoesters concentration in couples with infertility problems. Toxicology Letters 213(1):15–20CrossRefGoogle Scholar
  87. Transport Dept Delhi Govt (2009). http://www.delhi.gov.in/wps/wcm/ connect/doittransport/Transport/Home/General+Information/ Few+Interesting+Statistics
  88. Transport Dept Delhi Govt (2016) http://www.delhi.gov.in/wps/wcm/connect/7aaeb20040954623adeafd0d0d3667b7/Vehicle+Registration+details+catg+upto+31-12 2016+.pdf?MOD=AJPERES&lmod=426738658&CACHEID=7aaeb20040954623adeafd0d0d3667b7
  89. USEPA U (1997) Exposure factors handbook. Office of Research and Development, WashingtonGoogle Scholar
  90. USEPA (1998) Integratedrisk information system—benzene. URL http://www.epa.gov/iris/subst.o276.htm
  91. Vaishya A, Singh P, Rastogi S et al (2017) Aerosol black carbon quantification in the central Indo-Gangetic Plain: seasonal heterogeneity and source apportionment. Atmos Res 185:13–21CrossRefGoogle Scholar
  92. Wang G, Kawamura K, Lee S et al (2006) Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environ Sci Technol 40:4619–4625CrossRefGoogle Scholar
  93. Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24(8):938–939CrossRefGoogle Scholar
  94. WHO (2014) World Health Statistics 2014Google Scholar
  95. Wolff MS, Teitelbaum SL, Pinney SM et al (2010) Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspectives 118(7):1039CrossRefGoogle Scholar
  96. World Health Organization (2000) Air Quality Guidelines for Europe. 2nd ed. Copenhagen:WHO, Regional Office for Europe (Copenhagen)Google Scholar
  97. Yadav S, Tandon A, Attri AK (2013a) Characterization of aerosol associated non-polar organic compounds using TD-GC-MS: a four year study from Delhi, India. J Hazardous Materials 252:29–44CrossRefGoogle Scholar
  98. Yadav S, Tandon A, Attri AK (2013b) Monthly and seasonal variations in aerosol associated n-alkane profiles in relation to meteorological parameters in New Delhi, India. Aerosol Air Quality Res 13(1):287–300CrossRefGoogle Scholar
  99. Zhang KM, Wexler AS (2008) Modeling urban and regional aerosols—Development of the UCD Aerosol Module and implementation in CMAQ model. Atmospheric Environ 42(13):3166–3178CrossRefGoogle Scholar
  100. Zhang L, Wang F, Ji Y et al (2014) Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China. Atmospheric Environ 85:139–146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shivani
    • 1
  • Ranu Gadi
    • 1
  • Sudhir Kumar Sharma
    • 2
  • Tuhin Kumar Mandal
    • 2
  • Ravi Kumar
    • 3
  • Sharma Mona
    • 4
  • Sachin Kumar
    • 3
  • Sanchit Kumar
    • 4
  1. 1.Indira Gandhi Delhi Technical University for WomenNew DelhiIndia
  2. 2.National Physical LaboratoryCouncil of Scientific and Industrial Research (CSIR)New DelhiIndia
  3. 3.Multanimal Modi CollegeModinagarIndia
  4. 4.Central University of HaryanaMahendragarhIndia

Personalised recommendations