Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30597–30608 | Cite as

Prooxidant effects of chronic exposure to deltamethrin in green toad Bufotes viridis

  • Mohammed M. Nasia
  • Tijana B. Radovanović
  • Imre I. Krizmanić
  • Marko D. Prokić
  • Jelena P. Gavrić
  • Svetlana G. Despotović
  • Branka R. Gavrilović
  • Slavica S. Borković-Mitić
  • Slađan Z. Pavlović
  • Zorica S. Saičić
Research Article
  • 24 Downloads

Abstract

Pesticide-induced oxidative stress, as one of mechanism of toxicity, has been a focus of toxicological research. However, there is a lack of data for certain pesticides-oxidative stress effects especially on terrestrial amphibians. This study evaluates the prooxidative effects of orally administered insecticide deltamethrin (DM) in some tissues of the terrestrial toad Bufotes viridis. Toads were randomly divided and assigned to a control group and a test group that was orally exposed to the pesticide (5 mg/kg of body weight/daily) for 21 days. Animals were euthanized from each group on days 7, 14, and 21, and the liver, leg muscle, ventral skin, and gastrointestinal tissue (GIT) were dissected and used for analysis. From battery of investigated antioxidant components, superoxide dismutase (SOD) was the most differentiate parameter in all examined tissues. For the period of prolonged exposure to pesticide, antioxidative strategy of Bufotes viridis was based on SOD utilization in attempt to maintain the oxidative disbalance at acceptable level. The integrated biomarker response (IBR) as the measure of the overall biochemical response to DM exposure revealed that the group exposed for 21 days had the highest response. Our work has offered valuable data ensuring evidence that toads exposed to deltamethrin developed adaptive reactions that were tissue-specific and that DM-generated systemic toxicity was time-dependent. The present work showed that oxidative stress has significant role in pesticide-induced toxicity and contributes to better understanding of ecotoxicological risk in the terrestrial amphibians exposed to DM.

Keywords

Deltamethrin Chronic exposure Oxidative stress Bufotes viridis Biomarkers Sublethal exposure Pyrethroid 

Notes

Acknowledgements

The authors are grateful to Dr. Goran Poznanović for proofreading the manuscript and to Tamara Petrović for the statistical evaluation that significantly enhanced the quality of the paper.

Funding information

The present study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173041.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bartoskova M, Dobsikova R, Stancova V, Zivna D, Blahova J, Marsalek P, Zelníckova L, Bartos M, Di Tocco FC, Faggio C (2013) Evaluation of ibuprofen toxicity for zebrafish (Danio rerio) targeting on selected biomarkers of oxidative stress. Neuro Endocrinol Lett 34:102–108Google Scholar
  2. Begum G, Vijayaraghavan S (1996) Alterations in protein metabolism of muscle tissue in the fish Clarias batrachus Linn by commercial grade dimethoate. Bull Environ Contam Toxicol 57:223–228CrossRefGoogle Scholar
  3. Broeg K, Lehtonen KK (2006) Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Mar Pollut Bull 53:508–522CrossRefGoogle Scholar
  4. Çakıcı Ö (2015) Histopathologic changes in liver and kidney tissues induced by carbaryl in Bufotes variabilis (Anura: Bufonidae). Exp Toxicol Pathol 67:237–243CrossRefGoogle Scholar
  5. California EPA (2000) Deltamethrin risk characterization document—volume 1. California Environmental Protection Agency, Health Assessment Section, Medical Toxicology Branch, Department of Pesticide Regulation, SacramentoGoogle Scholar
  6. Canli M, Furness RW (1993) Toxicity of heavy metals dissolved in seawater and influences of sex and size on metal accumulation and tissue distribution in the Norway lobster Nephrops norvegicus. Mar Environ Res 36:217–223CrossRefGoogle Scholar
  7. Chromcova L, Blahova J, Zivna D, Plhalova L, Casuscelli Di Tocco F, Divisoval PM, Faggio C, Tichy F, Svobodova Z (2015) NeemAzal T/S - toxicity to early-life stages of common carp (Cyprinus carpio L.). Vet Med 60:23–30CrossRefGoogle Scholar
  8. Claiborne A (1984) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc, Boca Raton, pp 283–284Google Scholar
  9. Darlington RB, Weinberg S, Walberg H (1973) Canonical variate analysis and related techniques. Rev Educ Res 43:433–454CrossRefGoogle Scholar
  10. Devin S, Burgeot T, Giambérini L, Minguez L, Pain-Devin S (2014) The integrated biomarker response revisited: optimization to avoid misuse. Environ Sci Pollut Res 21:2448–2454CrossRefGoogle Scholar
  11. Devin S, Buffet PE, Châtel A, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C (2017) The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology 11(1):1–6CrossRefGoogle Scholar
  12. Dey S, Samanta P, Pal S, Mukherjee AK, Kole D, Ghosh AR (2016) Integrative assessment of biomarker responses in teleostean fishes exposed to glyphosate-based herbicide (Excel Mera 71). Emerg Contaminants 2(4):191–203CrossRefGoogle Scholar
  13. Duzguner V, Erdogan S (2010) Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pestic Biochem Physiol 97:13–18CrossRefGoogle Scholar
  14. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
  15. El-Tawil OS, Abdel-Rahman MS (2001) The role of enzyme induction and inhibition on cypermethrin hepatotoxicity. Pharmacol Res 44:33–40CrossRefGoogle Scholar
  16. Ezemonye L, Tongo I (2010) Sublethal effects of endosulfan and diazinon pesticides on glutathione-S-transferase (GST) in various tissues of adult amphibians (Bufo regularis). Chemosphere 81:214–217CrossRefGoogle Scholar
  17. Faggio C, Fazio F, Marafioti S, Arfuso F, Piccione G (2015) Oral administration of gum arabic: effects on haematological parameters and oxidative stress markers in Mugil cephalus. Iran J Fish Sci 14(1):60–72Google Scholar
  18. Faggio C, Pagano M, Alampi R, Vazzana I, Felice MR (2016) Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat Toxicol 180:258–265CrossRefGoogle Scholar
  19. Fazio F, Cecchini S, Faggio C, Caputo AR, Piccione G (2014) Stability of oxidative stress biomarkers in flathead mullet, Mugil cephalus, serum during short-term storage. Ecol Indic 46:188–192CrossRefGoogle Scholar
  20. Felício AA, Freitas JS, Scarin JB, de Souza Ondei L, Teresa FB, Schlenk D, de Almeida EA (2018) Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicol Environ Saf 149: 248–256CrossRefGoogle Scholar
  21. Freitas JS, Felício AA, Teresa FB, de Almeida EA (2017) Combined effects of temperature and clomazone (Gamit®) on oxidative stress responses and B-esterase activity of Physalaemus nattereri (Leiuperidae) and Rhinella schneideri (Bufonidae) tadpoles. Chemosphere 185:548–562CrossRefGoogle Scholar
  22. Glatzle D, Vuilleumier JP, Weber F, Decker K (1974) Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 30:665–667CrossRefGoogle Scholar
  23. Goulet NB, Hontella A (2003) Toxicity of cadmium, endosulfan and atrazine in adrenal steriodogenic cells of two amphibian species; Xenopus laevis and Rana catesbeiana. Environ Toxicol Chem 22:2106–2113CrossRefGoogle Scholar
  24. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212CrossRefGoogle Scholar
  25. Gutiérrez Y, Santos HP, Serrão JE, Oliveira EE (2016) Deltamethrin-mediated toxicity and cytomorphological changes in the midgut and nervous system of the mayfly Callibaetis radiatus. PLoS One.  https://doi.org/10.1371/journal.pone.0152383 CrossRefGoogle Scholar
  26. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  27. Headlam HA, Davies MJ (2004) Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med 36:1175–1184CrossRefGoogle Scholar
  28. Hernández-Moreno D, Soler F, Miguez MP, Perez-Lopez M (2010) Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, Tinca tinca, to carbofuran or deltamethrin. Sci Total Environ 408:4976–4983CrossRefGoogle Scholar
  29. Jenkins F, Smith J (2003) Effects of sublethal concentration of endosulfan on haematological and serum biochemical parameters in the carp, Cyprinus carpio. Bull Environ Contam Toxicol 70:993–997CrossRefGoogle Scholar
  30. Khan MZ, Nazia M, Fatima F, Rahilla T, Gabol K (2003) Comparison in the effect of lambda cyhalothrin with permethrin on cholinesterase activity in wildlife species Rana cyanophlyctis and Rana tigrina Ranidae: Amphibia Bull Pure. Appl Sci 2:43–49Google Scholar
  31. Kljajić P, Perić I (2009) Residual effects of deltamethrin and malathion on different populations of Sitophilus granarius (L.) on treated wheat grains. J Stored Prod Res 45:45–48CrossRefGoogle Scholar
  32. Langiano C, Martinez CB (2008) Toxicity and effects of a glyphosate-based herbicide on the neotropical fish Prochilodus lineatus. Comp Biochem Physiol C 147:222–231Google Scholar
  33. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:149–170Google Scholar
  34. Lionetto MG, Caricato R, Giordano ME, Pascariello MF, Marinosci L, Schettino T (2003) Integrated use of biomarkers (acetylcholineesterase and antioxidant enzyme activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull 46:324–330CrossRefGoogle Scholar
  35. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666CrossRefGoogle Scholar
  36. Lushchak OV, Kubrak OI, Storey JM, Storey KB, Lushchak VI (2009) Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937CrossRefGoogle Scholar
  37. Manna S, Bhattacharyya D, Mandal TK, Das S (2005) Repeated dose toxicity of deltamethrin in rats. Indian J Pharmacol 37:161–164CrossRefGoogle Scholar
  38. Mariel AC, Alejandra BP, Silvia PC (2014) Developmental toxicity and risk assessment of nonylphenol to the South American toad, Rhinella arenarum. Environ Toxicol Pharmacol 38:634–642CrossRefGoogle Scholar
  39. Messina CM, Faggio C, Laudicella AV, Sanfilippo M, Trischitta F, Santulli A (2014) Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus galloprovincialis): regulatory volume decrease (RVD) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol 157:94–100CrossRefGoogle Scholar
  40. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175Google Scholar
  41. Moorhouse KG, Casida JE (1992) Pesticides as activators of mouse liver microsomal glutathione-S-transferase. Pestic Biochem Physiol 44:83–90CrossRefGoogle Scholar
  42. Mutschmann F (1991) Ectoparasite control with synthetic pyrethroids in reptiles. In: Gabrisch K, Schildger B, Zwart P (eds) Internationales Kolloquium fur Pathologie und Therapie der Reptilien und Amphibien DVG-4. Deutsche Veterinarmedizinische Gesellschaft, Giessen, pp 95–106Google Scholar
  43. Narahashi T (1992) Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci 13:236–241CrossRefGoogle Scholar
  44. Neff JM (1985) Use of biochemical measurements to detect pollutant-mediated damage to fish. In: Carwel RD, Purdy R, Bahner RC (eds) Aquatic toxicology and hazard assessment. America Society for Testing Material, Philadelphia, pp 155–181Google Scholar
  45. Ohkawa H, Okishi N, Yogi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  46. Paškova V, Hilscherova K, Blaha L (2011) Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress. Rev Environ Contam Toxicol 211:25–61Google Scholar
  47. Peixoto F, Vicente J, Madeira VM (2004) A comparative study of plant and animal mitochondria exposed to paraquat reveals that hydrogen peroxide is not related to the observed toxicity. Toxicol in Vitro 18:733–739CrossRefGoogle Scholar
  48. Radovanović TB, Nasia M, Krizmanić II, Prokić MD, Gavrić JP, Despotović SG, Gavrilović BR, Borković-Mitić SS, Pavlović SZ, Saičić ZS (2017) Sublethal effects of the pyrethroid insecticide deltamethrin on oxidative stress parameters in green toad (Bufotes viridis L.). Environ Toxicol Chem 36:2814–2822CrossRefGoogle Scholar
  49. Ravinder V, Suryanarayana N (1988) Pesticides induced biochemical alterations in a fresh water catfish, Clarias batrachus. Indian J Comp Animal Physiol 6:5–12Google Scholar
  50. Rehman H, Ali M, Atif F, Kaur M, Bhatia K, Raisuddin S (2006) The modulatory effect of deltamethrin on antioxidants in mice. Clin Chim Acta 369:61–65CrossRefGoogle Scholar
  51. Rendon-von Osten J, Ortiz-Arana A, Guilhermino L, Soares AM (2005) In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636CrossRefGoogle Scholar
  52. Rossi MA, Cecchini G, Dianzani MM (1983) Glutathione peroxidase, glutathione reductase and glutathione transferase in two different hepatomas and in normal liver. IRCS Med Sci Biochem 11:805Google Scholar
  53. Sayeed I, Parvez S, Pandey S, Bin-Hafeez B, Haque R, Raisuddin S (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol Environ Saf 56:295–301CrossRefGoogle Scholar
  54. Sehonova P, Plhalova L, Blahova J, Doubkova V, Marsalek P, Prokes M, Tichy F, Skladana M, Fiorino E, Mikula P, Vecerek V, Faggio C, Svobodova Z (2017) Effects of selected tricyclic antidepressants on early-life stages of common carp (Cyprinus carpio). Chemosphere 185:1072–1080CrossRefGoogle Scholar
  55. Stewart DAB, Seesink LD (1996) Impact of locust control in semi-arid ecosystem in South Africa. In: Brighton Crop Protection Conference—Pests and Diseases. Vol. 3. Leicestershire: British Crop Protection Council, p 1193–1198Google Scholar
  56. Takada Y, Noguchit T, Kayiyama M (1982) Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus. Cancer Res 42:4233–4235Google Scholar
  57. Tamura M, Oshino N, Chance B (1982) Some characteristics of hydrogen- and alkylhydroperoxides metabolizing systems in cardiac tissue. J Biochem 92:1019–1031CrossRefGoogle Scholar
  58. Tongo I, Ezemonye L, Ochei U (2012) Diazinon mediated biochemical changes in the African toad (Bufo regularis). J Xenobiot 2:18–23CrossRefGoogle Scholar
  59. Van der Oost R, Beyer J, Vermeulen N (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammed M. Nasia
    • 1
  • Tijana B. Radovanović
    • 2
  • Imre I. Krizmanić
    • 3
  • Marko D. Prokić
    • 2
  • Jelena P. Gavrić
    • 2
  • Svetlana G. Despotović
    • 2
  • Branka R. Gavrilović
    • 2
  • Slavica S. Borković-Mitić
    • 2
  • Slađan Z. Pavlović
    • 2
  • Zorica S. Saičić
    • 2
  1. 1.Faculty of Biology, Chair of Comparative Physiology and EcophysiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Physiology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  3. 3.Faculty of Biology, Institute of ZoologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations