Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 29, pp 28834–28850 | Cite as

Temporal trends of contaminants in Arctic human populations

  • Khaled Abass
  • Anastasia Emelyanova
  • Arja Rautio
Review Article
  • 436 Downloads

Abstract

The first Arctic Monitoring and Assessment Programme (AMAP) report was published in 1998 and followed by three assessment reports of human health (AMAP 2003, 2009 and 2015). The focus area of the AMAP reports was to monitor levels of environmental contaminants in the Arctic and to assess the health effects connected with detected levels in Arctic countries. This review gives an overview of temporal trends of contaminants and their health effects in humans of the Arctic based on data published by AMAP, as well as Russian scientific literature. Several time series of 31 contaminants in humans of the Arctic from different cohorts are reported. The lengths of time series and periods covered differ from each other. International restrictions have decreased the levels of most persistent organic pollutants in humans and food webs. Percentage changes for contaminants in human biological matrices (blood samples from children, mothers and males and breast milk samples) for the period of sampling showed declining trends in most of the monitored Arctic locations, with the exception of oxychlordane, hexachlorobenzene (HCB), 2,2′,4,4′,5,5′-hexabromodiphenyl ether (PBDE153) and perfluorinated compounds (PFCs).

Keywords

Contaminants POPs Arctic Children Breast milk Maternal blood Trend analysis Health outcomes Russian Arctic 

Notes

Acknowledgments

This work was funded by the European Union’s Horizon 2020 under grant agreement number 773421-Nunataryuk (Permafrost thaw and the changing Arctic coast, science for socioeconomic adaptation) and by One Arctic–One Health: Animal and human health in the changing climate project funded by Ministry of Foreign Affairs of Finland (Grant Agreement No. HEL7M0674-65).

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

11356_2018_2936_MOESM1_ESM.pdf (158 kb)
Table S1 Percentage changes for contaminant monitoring trends in human biological matrices for the specific location and period of sampling. (PDF 157 kb)
11356_2018_2936_MOESM2_ESM.pdf (768 kb)
Figure S1 Trends of contaminants concentrations (ng/g lipid) in serum samples of men in the Tromsø study (Nøst et al. 2014). (PDF 768 kb)

References

  1. Adlard B, Donaldsona S G, Odland J O, Weihe P, Berner J, Carlsen A, Bonefeld-Jorgensen E C, Dudarev A A, Gibson J C, Krümmel E M, Olafsdottir K, Abass K, Rautio A, Bergdahl I A, Mulvad G (2018) Future directions for monitoring and human health research for the Arctic Monitoring and Assessment Programme. Global Health Action 11. doi:  https://doi.org/10.1080/16549716.2018.1480084 CrossRefGoogle Scholar
  2. AMAP (2003) AMAP Assessment 2002: Human Health in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp xiv+137Google Scholar
  3. AMAP (2004) AMAP, 2004. Persistent Toxic Substances, Food Security and Indigenous Peoples of the Russian North. Final Report. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 2004. p. 192. AMAP Report 2004:2Google Scholar
  4. AMAP (2009) AMAP Assessment 2009: Human Health in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp xiv+254Google Scholar
  5. AMAP (2015) AMAP Assessment 2015: Human health in the Arctic. Arctic Monitoring and Assessment Programme (AMAP) Oslo, Norway i-165.Google Scholar
  6. AMAP (2017) AMAP Assessment 2016: Chemicals of Emerging Arctic Concern. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, pp xvi–353Google Scholar
  7. Berg V, Nøst TH, Huber S, Rylander C, Hansen S, Veyhe AS, Fuskevåg OM, Odland JØ, Sandanger TM (2014) Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int 69:58–66  https://doi.org/10.1016/j.envint.2014.04.010 CrossRefGoogle Scholar
  8. Bloom MS, Jansing RL, Kannan K, Rej R, Fitzgerald EF (2014) Thyroid hormones are associated with exposure to persistent organic pollutants in aging residents of upper Hudson River communities. Int J Hyg Environ Health 217:473–482.  https://doi.org/10.1016/j.ijheh.2013.09.003 CrossRefGoogle Scholar
  9. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248.  https://doi.org/10.1016/j.mce.2011.09.005 CrossRefGoogle Scholar
  10. Bonefeld-Jorgensen E (2010) Biomonitoring in Greenland: human biomarkers of exposure and effects—a short review. Rural Remote Health 10:1362Google Scholar
  11. Bonefeld-Jørgensen E, Ghisari M, Wielsøe M, Bjerregaard-Olesen C, Kjeldsen L, Long M (2014) Biomonitoring and hormone-disrupting effect biomarkers of persistent organic pollutants in vitro and ex vivo. Basic Clin Pharmacol Toxicol 115:118–128CrossRefGoogle Scholar
  12. Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Krüger T, Ghisari M, Mulvad G, Kern P, Nzulumiki P, Dewailly E (2011) Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Environ. Health 10:88CrossRefGoogle Scholar
  13. Boucher O, Bastien CH, Saint-Amour D, Dewailly É, Ayotte P, Jacobson JL, Jacobson SW, Muckle G (2010) Prenatal exposure to methylmercury and PCBs affects distinct stages of information processing: an event-related potential study with Inuit children. Neurotoxicology 31:373–384.  https://doi.org/10.1016/j.neuro.2010.04.005 CrossRefGoogle Scholar
  14. Carlsson P, Breivik K, Brorström-Lundén E, Cousins I, Christensen J, Grimalt JO, Halsall C, Kallenborn R, Abass K, Lammel G, Munthe J, MacLeod M, Odland JØ, Pawlak J, Rautio A, Reiersen LO, Schlabach M, Stemmler I, Wilson S, Wöhrnschimmel H. Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: a comprehensive review combined with ArcRisk project results. Environ Sci Pollut Res Int. 2018 28Google Scholar
  15. Carpenter D (2008) Environmental contaminants as risk factors for developing diabetes. Rev Environ Health 23:59–74Google Scholar
  16. Chashchin MV, Chashchin VP, Fedorov ВН, Kuzmin AV, Kovshov АА, Kysraeva ZS, Mishkich IA (2012) Основные тенденции изменения концентраций стойких токсичных веществ в крови коренного населения Арктики/Main trends of change of persistent toxic substances concentrations in blood of Arctic region indigenous population. Экология Человека 6:3–7Google Scholar
  17. Chashchin MV, Chashchin VP, Kuzmin AV, Fedorov ВН, Meltser AV, Varshavskaya OO, Lachinov RS (2017) Современные Методы Биомониторинга Стойких Токсичных Соединений В Арктической Зоне Российской Федерации/Modern methods of biomonitoring of persistent toxic compounds in the arctic zone of the Russian Federation. Морская Медицина 3:94–101Google Scholar
  18. Chashchin VP, Plakhin IE (2015) Планирование Оказания Медицинской Помощи Населению Арктической Зоныроссийской Федерации/Healthcare planning for the population residing the Arctic region of the Russian Federation. Профилактическая И Клиническая Медицина 3(56):53–57Google Scholar
  19. Curren MS, Liang CL, Davis K, Kandola K, Brewster J, Potyrala M, Chan HM (2015) Assessing determinants of maternal blood concentrations for persistent organic pollutants and metals in the eastern and western Canadian Arctic. Sci Total Environ 527–528:150–158.  https://doi.org/10.1016/j.scitotenv.2015.04.079 CrossRefGoogle Scholar
  20. Dallaire F, Dewailly É, Muckle G, Vézina C, Jacobson SW, Jacobson JL, Ayotte P (2004) Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect 112(14):1359–1364CrossRefGoogle Scholar
  21. Dallaire R, Dewailly É, Pereg D, Dery S, Ayotte P (2009a) Thyroid function and plasma concentrations of polyhalogenated compounds in Inuit adults. Environ Health Perspect 117:1380–1386CrossRefGoogle Scholar
  22. Dallaire R, Muckle G, Dewailly É, Jacobson SW, Jacobson JL, Sandanger TM, Sandau C, Ayotte P (2009b) Thyroid hormone levels of pregnant Inuit women and their infants exposed to environmental contaminants. Environ Health Perspect. 117:1014–1020CrossRefGoogle Scholar
  23. Dallaire F, Dewailly E, Vãzina C, Muckle G, Weber J, Bruneau S, Ayotte P (2006) Effect of prenatal exposure to polychlorinated biphenyls on incidence of acute respiratory infections in preschool Inuit children. Environ Health Perspect. 114:1301CrossRefGoogle Scholar
  24. Dallaire R, Dewailly É, Ayotte P, Muckle G, Laliberté C, Bruneau S (2008) Effects of prenatal exposure to organochlorines on thyroid hormone status in newborns from two remote coastal regions in Québec, Canada. Environ Res 108:387–392.  https://doi.org/10.1016/j.envres.2008.08.004 CrossRefGoogle Scholar
  25. Debes F, Budtz-Jørgensen E, Weihe P, White RF, Grandjean P (2006) Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 28:363–375.  https://doi.org/10.1016/j.ntt.2006.02.004 CrossRefGoogle Scholar
  26. Debes F, Weihe P, Grandjean P (2016) Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury. Cortex 74:358–369.  https://doi.org/10.1016/j.cortex.2015.05.017 CrossRefGoogle Scholar
  27. Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E (2002) Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: a congener-specific analysis. Am J Epidemiol. 155:629–635CrossRefGoogle Scholar
  28. Deutch B, Hansen JC (2000) High human plasma levels of organochlorine compounds in Greenland. Regional differences and lifestyle effects. Dan Med Bull 47:132–137Google Scholar
  29. Deutch B, Pedersen HS, Asmund G, Hansen JC (2007) Contaminants, diet, plasma fatty acids and smoking in Greenland 1999–2005. Sci Total Environ 372:486–496CrossRefGoogle Scholar
  30. Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R (2000) Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ Health Perspect 108(3):205–211CrossRefGoogle Scholar
  31. Dudarev AA, Chupakhin VS (2014) Оценка влияния экспозиции к стойким токсичным веществам на исход беременности, соотношение полов новорожденных и менструальный статус коренных жительниц Чукотки/Influence of exposure to persistent toxic substances (PTS) on pregnancy outcomes, gender ratio and menstrual status in indigenous females of Chukotka. Гигиена И Санитария 93(1):36–40Google Scholar
  32. Dudarev AA, Chupakhin VS (2012) Специфика Экспозиции К Дихлородифенилтрихлорэтану Коренных Жителей Прибрежной И Материковой Чукотки/Peculiarities of exposure to polychlorinated biphenyls (PCBS) in the indigenous population of the coastal and mainland Chukotka. Гигиена И Санитария 2:15–20Google Scholar
  33. Dudarev AA, Chupakhin VS, Chashchin VP (2010a) Тяжелые металлы в крови женщин коренных национальностей Крайнего Севера/Blood heavy metals in women of indigenous ethnic groups in the Far North. Гигиена И Санитария 4:31–34Google Scholar
  34. Dudarev AA, Chupakhin VS, Chashchin VP, Mizernyuk VN, Lebedev GV (2010b) СнижениерискавредноговоздействиястойкихтоксичныхвеществназдоровьенаселенияКрайнегоСевера/Reduction of a risk of the deleterious effects of persistent toxic substances on the health of the Far North population. Гигиена И Санитария 2:28–35Google Scholar
  35. Dudarev AA, Chupakhin VS, Ivanova ZS, Lebedev GV (2012) Особенности Экспозиции К Полихлорированным Бифенилам У Коренных Жителей Прибрежной И Материковой Чукотки/Peculiarities of exposure to polychlorinated biphenyls (PCBS) in the indigenous population of the coastal and mainland Chukotka. Гигиена И Санитария 4:22–28Google Scholar
  36. Dudarev AA, Chupakhin VS, Sladkova YN, Burova DV, Gushchin ИВ, Talykova LV, Lukichova LA (2015) СодержаниеметалловвместныхпродуктахпитанияПеченгскогорайонаМурманскойобласти/Metal content of local foods in Pechenga district of Murmansk region. Медицина Труда И Промышленная Экология 2:35–40Google Scholar
  37. Dudarev AA, Gorbanev SA, Fridman KB (2017) Сотрудничество Фбун «Северо-Западный Научный Центр Гигиены И Общественного Здоровья» В Рамках Международных Проектов В Области Гигиены Окружающей Среды Арктики/Partnership of the Northwest Public Health Research Centre in the international projects in the field of Arctic environmental health. Гигиена И Санитария 96(7):601–606Google Scholar
  38. Dudarev AA, Nikanov AN (2012) Стойкие органические загрязнители (СОЗ) и сахарный диабет среди коренного и пришлого населения Кольской Лапландии/Persistent organic pollutants and diabetes mellitus in the indigenous population and newcomers to Kola Lapland. Токсикологический Вестник 4:7–12Google Scholar
  39. Dudarev AA, Odland JO (2017) Здоровье человека в связи с загрязнением Арктики—результаты и перспективы международных исследований под эгидой АМАП/Human health in connection with Arctic pollution—results and perspectives of international studies under the aegis of AMAP. Экология Человека 9:3–14Google Scholar
  40. Dudarev AA, Sladkova YN, Chupakhin VS, Doushkina EV, Lukichova LA (2016) Уровни экспозиции к металлам населения Печенгского района Мурманской области/Levels of exposure to metals in population of Pechenga district of Murmansk region. Медицина Труда И Промышленная Экология 6:11–16Google Scholar
  41. Dudarev AA, Sladkova YN, Chupakhin VS, Dushkina EV, Lukichova LA (2015a) Оценка риска здоровью населения при экспозиции к металлам, содержащимся в местных продуктах питания и питьевой воде в Печенгском районе Мурманской области/Evaluating health risk caused by exposure to metals in local foods and drinkable water in Pechenga district of Murmansk region. Медицина Труда И Промышленная Экология 11:25–32Google Scholar
  42. Dudarev AA, Sladkova YN, Chupakhin VS, Goushchin IV, Talykova LV, Nikanov AN, Doushkina EV (2015b) Содержание металлов в водоисточниках и питьевой воде в промышленных городах Мурманской области/Metallic content of water sources and drinkable water in industrial cities of Murmansk region. Медицина Труда И Промышленная Экология 2:29–34Google Scholar
  43. Dudarev AA, Chupakhin V, Odland JO, Reiersen L, Chashchin V (2010) A follow-up study of blood levels of persistent toxic substances (PTS) among indigenous peoples of the coastal Chukotka, Russia, 2001–2007. J Circumpolar Health 7:263–268Google Scholar
  44. Dudarev АА, Chashchin VP (2006) Гигиенические особенности вредного воздействия полихлорированных бифенилов (ПХБ) на репродуктивное здоровье коренного населения в российской Арктике/Hygienic features of polychlorinated xenyl (PCX) harmful effects on the reproductive health of the native population in the Russian Arctic. Вестник Санкт-Петербургской Государственной Медицинской Академии Им. И. и. Мечникова 1:43–48Google Scholar
  45. Dufour R (1988) The otitis media among Inuit childrenProposal for a new approach. Arctic Med Res. 47:659–665Google Scholar
  46. Emelyanova A (2017) Population projections of the Arctic by levels of education. Working Paper WP-17-022. The International Institute for Applied Systems Analysis, Laxenburg, Austria.  https://doi.org/10.13140/RG.2.2.22909.46563 CrossRefGoogle Scholar
  47. Eriksen K, Raaschou-Nielsen O, Sorensen M, Roursgaard M, Loft S, Moller P (2010) Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat Res. 700:39–43CrossRefGoogle Scholar
  48. Everett CJ, Matheson EM (2010) Biomarkers of pesticide exposure and diabetes in the 1999–2004 National Health and Nutrition Examination Survey. Environ Int 36:398–401.  https://doi.org/10.1016/j.envint.2010.02.010 CrossRefGoogle Scholar
  49. Filipic M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res. 733:69–77CrossRefGoogle Scholar
  50. Geier DA, Kern JK, King PG, Sykes LK, Geier MR (2012) Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int J Environ Res Public Health 9(12):4486–4497CrossRefGoogle Scholar
  51. Ghisari M, Long M, Bonefeld-Jorgensen E (2013) Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans. Int J Circumpolar Health 72:21113CrossRefGoogle Scholar
  52. Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, Darnerud PO (2012) Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trend 1996–2010. Environ Sci Tech 46:9071–9079CrossRefGoogle Scholar
  53. Glynn A, Berger U, Bignert A, Ullah S, Lignell S, Aune M, Darnerud PO (2011) Perfluoroalkyl substances in serum from first-time mothers in Uppsala—temporal trend 1996–2010. Report to the Swedish Environmental Protection Agency.Google Scholar
  54. Gorbanev SA, Chashchin VP, Gudkov AB, Fridman KB (2017) Применение Принципов Доказательности При Оценке Причинной Связи Нарушений Здоровья Населения С Воздействием Вредных Химических Веществ В Окружающей Среде/Operation of evidence-based principles in assessment of causal link between health condition and environmental hazardous substance exposure. Экология Человека 11:10–17Google Scholar
  55. Grandjean P, Andersen E, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P et al (2012a) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307:391–397CrossRefGoogle Scholar
  56. Grandjean P, Grønlund C, Kjær IM, Jensen TK, Sørensen N, Andersson A, …, Weihe P (2012b) Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls. Reprod Toxicol 34:498–503CrossRefGoogle Scholar
  57. Grandjean P, Murata K, Budtz-Jørgensen E, Weihe P (2004) Cardiac autonomic activity in methylmercury neurotoxicity: 14-year follow-up of a Faroese birth cohort. J Pediatr 144:169–176.  https://doi.org/10.1016/j.jpeds.2003.10.058 CrossRefGoogle Scholar
  58. Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci. 11:491–507CrossRefGoogle Scholar
  59. Health Canada (2013) Second Report on Human Biomonitoring of Environmental Chemicals in Canada. Canadian Health Measures Survey: Cycle 2 Data Tables (2009–2011). www statcan.gc.ca/pub/82-626-x/82-626-x2012002-eng.htm.Google Scholar
  60. Health Canada (2010) Report on human biomonitoring of environmental chemicals in Canada. Results of the Canadian Health Measures Survey Cycle 1 (2007–2009).Google Scholar
  61. Heilmann C, Budtz-Jorgensen E, Nielsen F, Heinzow B, Weihe P, Grandjean P (2010) Serum concentrations of antibodies against vaccine toxoids in children exposed perinatally to immunotoxicants. Environ Health Perspect 118:1434–1438CrossRefGoogle Scholar
  62. Heilmann C, Grandjean P, Weihe P, Nielsen F, Budtz-Jorgensen E (2006) Reduced antibody responses to vaccinations in children exposed to polychlorinated biphenyls. PLos Med 3:e311CrossRefGoogle Scholar
  63. Hu X, Hu D (2009) Effects of perfluorooctanoate and perfluorooctane sulfonate exposure on hepatoma Hep G2 cells. Arch Toxicol 83:851–861CrossRefGoogle Scholar
  64. Jusko TA, De Roos AJ, Schwartz SM, Lawrence BP, Palkovicova L, Nemessanyi T et al (2010) A cohort study of developmental polychlorinated biphenyl (PCB) exposure in relation to post-vaccination antibody response at 6-months of age. Environ Res 110(4):388–395CrossRefGoogle Scholar
  65. Kallenborn R, Halsall C, Dellong M, Carlsson P (2012) The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. J Environ Monit 14:2854–2869CrossRefGoogle Scholar
  66. Khurtsilava ОG, Chashchin VP, Meltser AV, Erastova NV, Chashchin MV, Bazilevskaya ЕМ, Dardunskiy OA (2017) Загрязнения Окружающей Среды Стойкими Токсичными Веществами И Профилактика Их Вредного Воздействия На Здоровье Коренного Населения Арктической Зоны Российской Федерации/Pollution of the environment with persistent toxic substances and prevention of their harmful impact on the health of the indigenous population residing in the Arctic zone of the Russian Federation. Гигиена И Санитария 96(5):409–414Google Scholar
  67. Konoplev AV, Pervunina RI, Dudarev AA, Samsonov DP, Chashchin VP, Chernik GV (2006) Полихлорированные бифенилы, дибензо-пдиоксины и дибензо-фураны в крови коренного населения Российского Севера/Polychlorinated biphenyls, dibenzo-p-dioxines, and dibenzofurans in the blood of the indigenous population of the Russian North. Гигиена И Санитария 2:65–71Google Scholar
  68. Konoplev AV, Tsaturov Y (2014) Стойкие Загрязняющие Вещества В Российской Арктике/Persistent toxic substances in the Russian Arctic. Наука В России 2:83–88Google Scholar
  69. Kruger T, Ghisari M, Hjelmborg P, Deutch B, Bonefeld-Jorgensen E (2008) Xenohormone transactivities are inversely associated to serum POPs in Inuit. Environ. Health 7:38CrossRefGoogle Scholar
  70. Lauby-Secretan B, Loomis D, Grosse Y, El GF, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K, WHO International Agency for Research on Cancer (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 14:287–288CrossRefGoogle Scholar
  71. Lee D, Lee I, Porta M, Steffes M, Jacobs DJ (2007) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50:1841–1851CrossRefGoogle Scholar
  72. Lignell S, Aune M, Glynn A, Cantillana T, Fridén U (2014) Levels of persistent halogenated organic pollutants (POP) in mother’s milk from first-time mothers in Uppsala, Sweden—results from year 2012 and temporal trends for the time period 1996–2012. Report to the Swedish Environmental Protection Agency. Report No. 2014-05-06.Google Scholar
  73. Lyngsø J, Ramlau-Hansen C, Høyer B, Støvring H, Bonde J, Jönsson B, Lindh C, Pedersen H, Ludwicki J, Zviezdai V, Toft G (2014) Menstrual cycle characteristics in fertile women from Greenland, Poland and Ukraine exposed to perfluorinated chemicals: a cross-sectional study. Hum Reprod 29:359–367CrossRefGoogle Scholar
  74. Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, Strachan WMJ, Li YF, Wania F, Alaee M, Alexeeva LB, Backus SM, Bailey R, Bewers JM, Gobeil C, Halsall CJ, Harner T, Hoff JT, Jantunen LMM, Lockhart WL, Mackay D, Muir DCG, Pudykiewicz J, Reimer KJ, Smith JN, Stern GA, Schroeder WH, Wagemann R, Yunker MB (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234.  https://doi.org/10.1016/S0048-9697(00)00434-4 CrossRefGoogle Scholar
  75. Macdonald RW, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342:5–86.  https://doi.org/10.1016/j.scitotenv.2004.12.059 CrossRefGoogle Scholar
  76. Matesheva AV (2017) О возмещении ущерба здоровью населения в городах Арктической зоны Российской Федерации от загрязнения атмосферного воздуха/On compensation of damage to the health of the population in the cities of the Arctic zone of the Russian Federation from air pollution. Арктика: Экология И Экономика 3(23):111–117Google Scholar
  77. Meltser AV, Erastova NV, Chashchin MV, Bazilevskaya ЕМ, Belikova ТМ, Kovshov АА, Chashchin VP (2016) ОценкаЭффективностиПрофилактическихМерПоСнижениюВредногоВоздействияСтойкихТоксичныхВеществНаЗдоровьеКоренногоНаселенияРоссийскойАрктики/Assessing effectiveness of prevention measures to decrease harmful impact of PTS on health of native population in the Russian Arctic. Conference title (Modern methodological problems of assessing and analysing environmental factors affecting human health) Moscow, 15–16 Dec 2016. Publisher: Centre for strategic planning and management of medical and biological health risks, Moscow. 58–60Google Scholar
  78. Murata K, Weihe P, Budtz-Jørgensen E, Jørgensen PJ, Grandjean P (2004) Delayed brainstem auditory evoked potential latencies in 14-year-old children exposed to methylmercury. J Pediatr 144:177–183.  https://doi.org/10.1016/j.jpeds.2003.10.059 CrossRefGoogle Scholar
  79. Nieminen P, Lehtiniemi H, Huusko A, Vähäkangas K, Rautio A (2013) Polychlorinated biphenyls (PCBs) in relation to secondary sex ratio—a systematic review of published studies. Chemosphere 91:131–138.  https://doi.org/10.1016/j.chemosphere.2012.11.019 CrossRefGoogle Scholar
  80. Nøst TH, Breivik K, Fuskevåg OM, Nieboer E, Odland JØ, Sandanger TM (2013) Persistent organic pollutants in Norwegian men from 1979 to 2007: intraindividual changes, age–period–cohort effects, and model predictions. Environ Health Perspect 121:1292–1298CrossRefGoogle Scholar
  81. Nøst TH, Vestergren R, Berg V, Nieboer E, Odland JØ, Sandanger TM (2014) Repeated measurements of per- and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort. Environ Int 67:43–53.  https://doi.org/10.1016/j.envint.2014.02.011 CrossRefGoogle Scholar
  82. O'Brien M, Spear B, Glauert H (2005) Role of oxidative stress in peroxisome proliferator-mediated carcinogenesis. Crit Rev Toxicol. 35:61–88CrossRefGoogle Scholar
  83. Patel C, Bhattacharya J, Butte A (2010) An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PloS One 5:e10746CrossRefGoogle Scholar
  84. Paunescu A, Ayotte P, Dewailly É, Dodin S (2013a) Dioxin-like compounds are not associated with bone strength measured by ultrasonography in Inuit women from Nunavik (Canada): results of a cross-sectional study. Int J Circumpolar Health 72:CrossRefGoogle Scholar
  85. Paunescu A, Dewailly É, Dodin S, Nieboer E, Ayotte P (2013b) Dioxin-like compounds and bone quality in Cree women of Eastern James Bay (Canada): a cross-sectional study. Environ Health 12:54CrossRefGoogle Scholar
  86. Pestana D, Teixeira D, Faria A, Domingues V, Monteiro R, Calhau C (2015) Effects of environmental organochlorine pesticides on human breast cancer: putative involvement on invasive cell ability. Environ Toxicol 30:168–176CrossRefGoogle Scholar
  87. Rigét F, Bignert A, Braune B, Stow J, Wilson S (2010) Temporal trends of legacy POPs in Arctic biota, an update. Sci Total Environ 408:2874–2884.  https://doi.org/10.1016/j.scitotenv.2009.07.036 CrossRefGoogle Scholar
  88. Salay E, Garabrant D (2009) Polychlorinated biphenyls and thyroid hormones in adults: a systematic review appraisal of epidemiological studies. Chemosphere 74:1413–1419.  https://doi.org/10.1016/j.chemosphere.2008.11.031 CrossRefGoogle Scholar
  89. Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders L, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol. 23:432–442CrossRefGoogle Scholar
  90. Specht IO, Hougaard KS, Spanò M, Bizzaro D, Manicardi GC, Lindh CH, Toft G, Jönsson BAG, Giwercman A, Bonde JPE (2012) Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances—a study of spouses of pregnant women in three geographical regions. Reprod Toxicol 33:577–583.  https://doi.org/10.1016/j.reprotox.2012.02.008 CrossRefGoogle Scholar
  91. Sundkvist A, Wennberg M, Rentschler G, Lundh T, Carlberg B, Rodushkin I, Bergdahl IA (2011) Time trends of cadmium, lead and mercury in the population of Northern 160 AMAP Assessment 2015: Human Health in the Arctic Sweden 1990–2009 and blood levels of rhodium and platinum in 2009. Rapport 2011–03-31. Från Yrkes- och miljömedicinGoogle Scholar
  92. Tang-Péronard JL, Heitmann BL, Andersen HR, Steuerwald U, Grandjean P, Weihe P, Jensen TK (2014) Association between prenatal polychlorinated biphenyl exposure and obesity development at ages 5 and 7 y: a prospective cohort study of 656 children from the Faroe Islands. Am J Clin Nutr 99(1):5–13CrossRefGoogle Scholar
  93. Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles A, Thayer KA, Lind L (2013) Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. Environ Health PerspectGoogle Scholar
  94. Ten Tusscher GW, Steerenberg PA, van Loveren H, Vos JG, von den Borne AE, Westra M, Koppe JG (2003) Persistent hematologic and immunologic disturbances in 8-year-old Dutch children associated with perinatal dioxin exposure. Environ Health Perspect 111(12):1519–1523CrossRefGoogle Scholar
  95. Toft G, Jonsson B, Lindh C, Giwercman A, Spano M, Heederik D et al (2012) Exposure to perfluorinated compounds and human semen quality in Arctic and European populations. Hum Reprod 27:2532–2540CrossRefGoogle Scholar
  96. Tuomisto J, Airaksinen R, Kiviranta H, Tukiainen E, Pekkanen J, Tuomisto JT (2016) A pharmacokinetic analysis and dietary information are necessary to confirm or reject the hypothesis on persistent organic pollutants causing type 2 diabetes. Toxicol Lett 261:41–48CrossRefGoogle Scholar
  97. Valera B, Dewailly E, Poirier P (2008) Cardiac autonomic activity and blood pressure among Nunavik Inuit adults exposed to environmental mercury: a cross-sectional study. Environ Health 7:29.  https://doi.org/10.1186/1476-069X-7-29 CrossRefGoogle Scholar
  98. Weihe P, Joensen HD (2012) Dietary recommendations regarding pilot whale meat and blubber in the Faroe Islands. Int JCircumpolar Health 71:18594CrossRefGoogle Scholar
  99. Weihe P, Debes F, Halling J, Petersen MS, Muckle G, Odland JØ, Dudarev A, Ayotte P, Dewailly É, Grandjean P, Bonefeld-Jørgensen E (2016) Health effects associated with measured levels of contaminants in the Arctic. Int J Circumpolar Health 75:33805.  https://doi.org/10.3402/ijch.v75.33805 CrossRefGoogle Scholar
  100. Wielsøe M, Long M, Ghisari M, Bonefeld-Jørgensen EC (2015) Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere 129:239–245.  https://doi.org/10.1016/j.chemosphere.2014.10.014 CrossRefGoogle Scholar
  101. Zakharov VM, Revich BA, Trofimov IE (2018) Role of assessment of the health of the environment for characterizing the impact of environmental factors on human health (Assessment of health of humans and the environment: possible approaches). Russ J Dev Biol 49(1):12–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Arctic Health, Faculty of MedicineUniversity of OuluOuluFinland
  2. 2.Department of PesticidesMenoufia UniversityMenoufiaEgypt
  3. 3.Thule Institute & University of ArcticUniversity of OuluOuluFinland

Personalised recommendations