Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 30659–30670 | Cite as

Impact of marine and continental sources on aerosol characteristics using an on-board SPAMS over southeast sea, China

  • Jinpei Yan
  • Liqi Chen
  • Shuhui Zhao
  • Miming Zhang
  • Qi Lin
  • Lei Li
Research Article
  • 28 Downloads

Abstract

The chemical composition of atmospheric aerosols was characterized using an on-board single particle aerosol mass spectrometer (SPAMS) over the Southeast China Sea. High-time-resolution observation of marine aerosols was carried out to clarify the source of aerosols and the interaction of marine and continental aerosols. Atmospheric aerosols were determined by the interaction of continental and marine sources over coastal area. Aerosols from continental sources flux into sea surfaces through deposition or diffusion, which results in the rapid decrease of continental aerosols. Five main subtypes of carbonaceous particles are identified as C_Al-Si, C_V-Ni, C_S, C_K, and C_secondary to clarify the impact of marine and continental sources on atmospheric aerosols. High fraction of C_Al-Si and C_secondary is present over XA (Xiamen anchorage), accounting for 23.8% and 18.6% of total carbonaceous particles. Contrarily, the relative percentage of C_S increases as the distance from land to sea increases. The influence of continental aerosols declines, while the contribution of marine aerosols increases as the distance from land to sea increases. Air masses in XA, LSA (land to sea area), SLA (sea to land area), and SA (sea area) were all from ocean during the observation period, resulting in low relative fraction of continental aerosols in SLA, SA, and LSA. High-time-resolution measurement is useful to understand aerosol source types and the impact of marine and continental sources on marine atmosphere aerosols.

Keywords

Marine aerosol Chemical compositions Size distribution On-board observation Single particle aerosol mass spectrometer (SPAMS) 

Notes

Acknowledgements

The authors gratefully acknowledge Guangzhou Hexin Analytical Instrument Company Limited for the SPAMS data analysis and on-board observation technical assistance. The authors gratefully acknowledge NOAA Air Resources laboratory (ARL) for the provision of the HYSPLIT_4 transport model used in this publication.

Funding information

This study is financially supported by Qingdao National Laboratory for marine science and technology (No. QNLM2016ORP0109), the Natural Science Foundation of Fujian Province, China (No. 2015J05024), the National Natural Science Foundation of China (No. 21106018 and No. 41305133), the Scientific Research Foundation of Third Institute of Oceanography, SOA. (No. 2014027), and the Special Fund for Marine Researches in the Public Interest (No. 2004DIB5J178).

Supplementary material

11356_2018_2902_MOESM1_ESM.doc (14.6 mb)
ESM 1 (DOC 14938 kb)

References

  1. Allen JO (2005) YAADA: software toolkit to analyze single-particle mass spectral data. https://www.arb.ca.gov/research/apr/past/01-338_manual.pdf
  2. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. J Aerosol Sci 36:801–812CrossRefGoogle Scholar
  3. Bao JJ, Yang LJ, Yan JP, Xiong GL, Lu B, Xin CY (2013) Experimental study of fine particles removal in the desulfurated scrubbed flue gas. Fuel 108:73–79CrossRefGoogle Scholar
  4. Bi XH, Zhang GH, Li L, Wang XM, Li M, Sheng GY (2011) Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmos Environ 45:3447–3453CrossRefGoogle Scholar
  5. Chalbot MC, Mcelroy B, Kavouras I (2013) Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast. Atmos Chem Phys 13:3721–3732CrossRefGoogle Scholar
  6. Chen Y, Zhuang GS, Guo ZG (2010) Atmospheric deposition of nutrients and trace elements to the coastal oceans: a review. Adv Earth Science 25:682–689Google Scholar
  7. Decesari S, Finessi E, Rinaldi M, Paglione M, Fuzzi S, Stephanou EG, Tziaras T, Spyros A, Ceburnis D, O’Dowd C, Dall’Osto M, Harrison RM, Allan J, Coe H, Facchini MC (2011) Primary and secondary marine aerosols over the North Atlantic Ocean during the MAP experiment. J Geophys Res 116:1–21CrossRefGoogle Scholar
  8. Després VR, Huffman A, Burrows SM, Hoose C, Safatov AS, Buryak G (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B 64:15598CrossRefGoogle Scholar
  9. Falkowska L, Lewandowska A (2004) Sulphates in particles of different sizes in the marine boundary layer over the southern Baltic Sea. Oceanologia 46:201–215Google Scholar
  10. Foltescu VL, Lindgred ES, Isakson J, Oblad M, Pacyna JM, Benson S (1996) Gas-to-particle conversion of sulphur and nitrogen compounds as studied at marine stations in northern Europe. Atmos Environ 30:3129–3140CrossRefGoogle Scholar
  11. Fu H, Zheng M, Yan C, Li X, Gao H, Yao X, Guo Z, Zhang Y (2015) Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer. J Environ Sci 29:62–70CrossRefGoogle Scholar
  12. Gaston CJ, Furutani H, Guazzotti SA, Coffee KR, Bates TS, Quinn PK (2011) Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. J Geophys Res 116:597–616CrossRefGoogle Scholar
  13. Gkikas A, Hatzianastassiou N, Mihalopoulos N, Torres O (2016) Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000–2007). Atmos Environ 128:286–304CrossRefGoogle Scholar
  14. Guazzotti SA, Suess DT, Coffee KR, Quinn PK, Bates TS, Wisthaler A, Hansel A, Ball WP, Dickerson RR, Neususs C, Crutzen PJ, Prather KA (2003) Characterization of carbonaceous aerosols outflow from India and Arabia: biomass / biofuel burning and fossil fuel combustion. J Geophys Res 108:1211–1222CrossRefGoogle Scholar
  15. Hoomaert S, Godoi RHM, Van Grieken R (2003) Single particle characterization of the aerosol in the marine boundary layer and free troposphere over Tenerife, NE Atlantic, during ACE-2. J Atmos Chem 46:271–293CrossRefGoogle Scholar
  16. Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang X, Smith KA, Morris JW, Davidovits P (2003) Ambient aerosol sampling with an aerosol mass spectrometer. J Geophys Res 108:8425CrossRefGoogle Scholar
  17. Kim JH, Yum SS, Lee YG, Choi BC (2009) Ship measurements of submicron aerosol size distributions over the Yellow Sea and the East China Sea. Atmos Res 93:700–714CrossRefGoogle Scholar
  18. Legrand M, Pasteur EC (1998) Methane sulfonic acid to non-sea-salt sulphate ration in coastal Antarctic aerosol and surface snow. J Geophys Res 103:10991–11006CrossRefGoogle Scholar
  19. Li L, Li M, Huang ZX, Gao W, Nian HQ, Fu Z, Gao J, Chai FH, Zhou Z (2014) Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing. Atmos Environ 94:323–331CrossRefGoogle Scholar
  20. Lin P, Hu M, Wu ZJ, Niu YW, Zhu T (2007) Marine aerosol size distributions in the springtime over China adjacent seas. Atmos Environ 41:6784–6796CrossRefGoogle Scholar
  21. Liu Y, Shao M (2007) Estimation amd prediction of black carbon emissions in Beijing city. Chin Sci Bull 52:1274–1281CrossRefGoogle Scholar
  22. Ma L, Li M, Zhang H, Li L, Huang Z, Gao W, Chen D, Fu Z, Nian H, Zou L, Chai F, Zhou Z (2016) Comparative analysis of chemical composition and sources of aerosol particles in urban Beijing during clear, hazy, and dusty days using single particle aerosol mass spectrometry. J Clean Prod 112:1319–1329CrossRefGoogle Scholar
  23. Masalaite A, Holzinger R, Remeikis V, Rockmann T, Dusek U (2017) Characteristics, sources and evolution of fine aerosol (PM1) at urban, coastal and forest background sites in Lithuania. Atmos Environ 148:62–76CrossRefGoogle Scholar
  24. Murphy D, Cziczo D, Froyd K, Hudson P, Matthew B, Middlebrook A, Peltier R, Sullivan A, Thomson D, Weber R (2006) Single-particle mass spectrometry of tropospheric aerosol particles. J Geophys Res Atmos 111(D23):1–15Google Scholar
  25. Murphy SM, Agrawal H, Sorooshian A, Padró LT, Gates H, Hersey S (2009) Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ Sci Technol 43:4626–4640CrossRefGoogle Scholar
  26. Nakamura T, Ogawa H, Maripi DK, Uematsu M (2006) Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmos Environ 40:7259–7264CrossRefGoogle Scholar
  27. Norris SJ, Brooks IM, Moat BI, Yelland MJ (2013) Near-surface measurement of sea spray aerosol production over whitecaps in the open ocean. Ocean Sci 9:133–145CrossRefGoogle Scholar
  28. O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680CrossRefGoogle Scholar
  29. Ohlstrom MO, Lehtinen KEJ, Moisio M, Jokiniemi JK (2000) Fine-particle emissions of energy production in Finland. Atmos Environ 34:3701–3711CrossRefGoogle Scholar
  30. Phinney L, Leaitch WR, Lohmann U, Boudries H, Worsnop DR, Jayne JT (2006) Characterization of the aerosol over the sub-arctic north East Pacific Ocean. Deep-Sea Res II Top Stud Oceanogr 53:2410–2433CrossRefGoogle Scholar
  31. Shan J (2010) Study on measurement method and its application to determining the residence time of atmospheric aerosol. (PhD thesis). Nanhua University, ShanghaiGoogle Scholar
  32. Shi J, Zhang J, Gao HW, Tan SC, Yao XH, Ren JL (2013) Condentration, solubility and deposition flux of atmospheric particulate nurients over the Yellow Sea. Deep-Sea Res II 97:43–50CrossRefGoogle Scholar
  33. Sitaras IE, Siskos PA (2008) The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study. Environ Chem Lett 6:59–69CrossRefGoogle Scholar
  34. Song XH, Hopke PK, Fergenson DP, Prather KA (1999) Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal Chem 71:860–865CrossRefGoogle Scholar
  35. Spencer MT, Shields LG, Prather KA (2007) Simultaneous measurement of the effective density and chemical composition of ambient aerosol particles. Environ Sci Technol 41:1303–1309CrossRefGoogle Scholar
  36. Sullivan RC, Guazzotti SA, Sodeman DA, Prather KA (2007) Direct observations of the atmospheric processing of Asian mineral dust. Atmos Chem Phys 7:1213–1236CrossRefGoogle Scholar
  37. Udisti R, Dayan U, Becagli S, Busetto M, Frosini D, Legrand M, Lucarelli F, Preunkert S, Severi M, Traversi R, Vitale V (2012) Sea spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions. Atmos Environ 52:109–120CrossRefGoogle Scholar
  38. Von Glasow R, Crutzen P (2004) Model study of multiphase DMS oxidation with a focus on halogens. Atmos Chem Phys 4:589–608CrossRefGoogle Scholar
  39. Wang ZH (2018) Energy and air pollution. Comprehensive Energy Sys 1:909–949CrossRefGoogle Scholar
  40. Wang Y, Zhuang G, Sun Y, Zheng A (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ 40:6579–6591CrossRefGoogle Scholar
  41. Wang ZB, Hu M, Wu ZJ, Yue DL, He LY, Huang XF, Liu XG, Wiedensohler A (2013) Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmos Chem Phys 13:10159–10170CrossRefGoogle Scholar
  42. Woods E, Chung D, Lanney HM, Ashwell BA (2010) Surface morphology and phase transitions in mixed Nacl/MgSO4 aerosol particles. J Phys Chem 114:2837–2844CrossRefGoogle Scholar
  43. Yan JP, Chen LQ, Lin Q, Zhang YH, Li Z (2013) A study of aerosol chemical compositions and size distribution property on the coastal area of southern Xiamen island. J Appl Oceanogr 32:455–460Google Scholar
  44. Yan J, Chen L, Lin Q, Li Z, Chen H, Zhao S (2015) Chemical characteristics of submicron aerosol particles during a long-lasting haze episode in Xiamen, China. Atmos Environ 113:118–126CrossRefGoogle Scholar
  45. Yan JP, Chen LQ, Yang L (2016) Combined effect of acoustic agglomeration and vapor condensation on fine particles removal. Chem Eng J 290:319–327CrossRefGoogle Scholar
  46. Yang L, Bao J, Yan J, Liu J, Song S, Fan F (2010) Removal of fine particles in wet flue gas desulfurization system by heterogeneous condensation. Chem Eng J 156:25–32CrossRefGoogle Scholar
  47. Yao Q, Li S, Xu H, Zhuo J, Song Q (2009) Studies on formation and control of combustion particulate matter in China: a review. Energy 34:1296–1309CrossRefGoogle Scholar
  48. Yin LQ, Niu ZC, Chen XQ, Chen JS, Xu LL, Zhang FW (2012) Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong’an, China. J Environ Sci 24:1225–1233CrossRefGoogle Scholar
  49. Yu F, Turco RP (2011) The size-dependent charge fraction of sub-3-nm particles as a key diagnostic of competitive nucleation mechanisms under atmospheric conditions. Atmos Chem Phys 11:9451–9463CrossRefGoogle Scholar
  50. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onash T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottell R, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced northern hemisphere mid latitudes. Geophys Res Lett 34:L13801Google Scholar
  51. Zhang F, Xu L, Chen J, Zhao J, Yu Y, Niu Z, Yin L (2012) Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009-May 2010. Atmos Res 106:150–158CrossRefGoogle Scholar
  52. Zhang TR, Shi JH, Gao HW, Zhang J, Yao XH (2013) Impact of source and atmospheric processing on Fe solubility in aerosols over the Yellow Sea, China. Atmos Environ 75:249–256CrossRefGoogle Scholar
  53. Zhang MM, Chen LQ, Xu GJ, Liang MY (2015) Linking phytoplankton activity in polynyas and sulfur aerosols over Zhangshan Station, East Antarctica. J Atmos Sci 72:4629–4642CrossRefGoogle Scholar
  54. Zhao J, Zhang F, Xu Y, Chen J (2011) Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmos Res 99:546–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Third Institute of Oceanography, State Oceanic AdministrationXiamenPeople’s Republic of China
  2. 2.Key Laboratory of Global Change and Marine-Atmospheric ChemistryXiamenChina
  3. 3.Institute of Atmospheric Environment Safety and pollution ControlJinan UniversityGuangzhouChina

Personalised recommendations