Environmental Science and Pollution Research

, Volume 25, Issue 28, pp 28296–28311 | Cite as

The way forward confronting eco-environmental challenges during land-use practices: a bibliometric analysis

  • Quan Wu
  • Jun Hao
  • Yanhua Yu
  • Jianguo Liu
  • Pengyu Li
  • Zhining Shi
  • Tianlong Zheng
Research Article


With rapid urbanisation and industrialisation, land-use practice, while satisfying the ever-increasing desires of our material civilisation in the short term, may undermine natural ecosystems on a local, regional and global scale in the long run. Innovative and sustainable land-use practices should be developed in response, so that eco-environmental problems can assessed and dealt with during the whole process of land-use planning, construction, operation, maintenance and management. Using a bibliometric analysis, this study has traced global trends in land-use research from 1992 to 2016, as indexed in the Science Citation Index EXPANDED (SCI-EXPANDED) and the Social Sciences Citation Index (SSCI). A novel method called ‘word cluster analysis’ has revealed that hotspot analysis is one of the emerging techniques, tools and strategies used to respond to, improve, and protect deteriorating ecosystems during land use. Based on involving various elements, the emerging analytical techniques and tools, including geographical information systems (GIS) and remote sensing, have attracted attention for their ability to assess and solve increasingly serious eco-environmental problems, such as climate change, deforestation, soil erosion, greenhouse gas (GHG) emissions and eutrophication. Ecosystem services, biodiversity conservation, protected areas, and sustainable development are also potential resilience strategies used to confront eco-environmental destruction. The maximum benefits that can be derived from natural ecosystems should be pursued to achieve environmentally sustainable land-use development, strengthening the socio-economy and eco-environment, as well as enhancing the well-being of people and nature.


Bibliometric analysis Eco-environmental challenges Land use Science Citation Index EXPANDED (SCI-EXPANDED) Social Sciences Citation Index (SSCI) 



This work was supported by Inner Mongolia Grassland Talent Plan; Innovation team of quantity quality-ecological monitoring-sustainable utilisation of land resources in Inner Mongolia. The authors would like to thank Prof. Dr. Yuh-Shan Ho for the technical support and guidance of our manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11356_2018_2866_MOESM1_ESM.docx (265 kb)
ESM 1 (DOCX 264 kb)


  1. Alvarenga RA, Dewulf J, Van Langenhove H, Huijbregts MA (2013) Exergy-based accounting for land as a natural resource in life cycle assessment. Int J Life Cycle Assess 18(5):939–947CrossRefGoogle Scholar
  2. Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plan 67(1):9–26CrossRefGoogle Scholar
  3. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Chang 2:182–185CrossRefGoogle Scholar
  4. Baskerville C (1904) The titles of papers. Science (New York, NY) 19(487):702–703CrossRefGoogle Scholar
  5. Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH, Dugdale S (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341(6141):45–50CrossRefGoogle Scholar
  6. Bell M, Pavitt K (1997) Technological accumulation and industrial growth: contrasts between developed and developing countries. Cambridge University Press, Cambridge, pp 83–137Google Scholar
  7. Brandão M, Canals ILM (2013) Global characterisation factors to assess land use impacts on biotic production. Int J Life Cycle Assess 18(6):1243–1252CrossRefGoogle Scholar
  8. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  9. Chang S, Blanco JA, Lo Y (2016) Introductory chapter: land use change ecosystem services and tropical forests. IntechOpen Limited, London, pp 1–10. Google Scholar
  10. Chen H, Ho Y (2015) Highly cited articles in biomass research: a bibliometric analysis. Renew Sustain Energy Rev 49(Supplement C):12–20CrossRefGoogle Scholar
  11. Chiu WT, Huang JS, Ho YS (2004) Bibliometric analysis of severe acute respiratory syndrome-related research in the beginning stage. Scientometrics 61(1):69–77CrossRefGoogle Scholar
  12. Chuang K, Wang M, Ho Y (2011) High-impact papers presented in the subject category of water resources in the essential science indicators database of the institute for scientific information. Scientometrics 87(3):551–562CrossRefGoogle Scholar
  13. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678CrossRefGoogle Scholar
  14. Crutzen PJ, Heidt LE, Krasnec JP, Pollock WH, Seiler W (1979) Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS. Nature 282:253–256CrossRefGoogle Scholar
  15. Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Res 41(2):165–195CrossRefGoogle Scholar
  16. Darnhofer I, Schermer M, Steinbacher M, Gabillet M, Daugstad K (2017) Preserving permanent mountain grasslands in Western Europe: why are promising approaches not implemented more widely? Land Use Policy 68:306–315CrossRefGoogle Scholar
  17. De Nooy W, Mrvar A, Batagelj V (2011) Exploratory social network analysis with Pajek, 27. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2(5):249–257CrossRefGoogle Scholar
  19. Delphin S, Escobedo FJ, Abd-Elrahman A, Cropper WP (2016) Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 54:188–199CrossRefGoogle Scholar
  20. Duan H, Ma R, Loiselle SA, Shen Q, Yin H, Zhang Y (2014) Optical characterization of black water blooms in eutrophic waters. Sci Total Environ 482-483:174–183CrossRefGoogle Scholar
  21. Dudley N (2008) Guidelines for applying protected area management categories. IUCN (International Union for Conservation of Nature), Gland, Switzerland, pp  1–43Google Scholar
  22. Escadafal R, Barbero Sierra C, Exbrayat W, Marques MJ, Akhtar Schuster M, El Haddadi A, Ruiz M (2015) First appraisal of the current structure of research on land and soil degradation as evidenced by bibliometric analysis of publications on desertification. Land Degrad Dev 26(5):413–422CrossRefGoogle Scholar
  23. Finardi U (2015) Scientific collaboration between BRICS countries. Scientometrics 102(2):1139–1166CrossRefGoogle Scholar
  24. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  25. Fu H, Ho Y (2016) Highly cited Antarctic articles using Science Citation Index Expanded: a bibliometric analysis. Scientometrics 109(1):337–357CrossRefGoogle Scholar
  26. Fu H, Wang M, Ho Y (2012) The most frequently cited adsorption research articles in the Science Citation Index (Expanded). J Colloid Interface Sci 379:148–156CrossRefGoogle Scholar
  27. Fu H, Wang M, Ho Y (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992–2011. Sci Total Environ 443(Supplement C):757–765CrossRefGoogle Scholar
  28. Fu H, Long X, Ho Y (2014) China’s research in chemical engineering journals in Science Citation Index Expanded: a bibliometric analysis. Scientometrics 98(1):119–136CrossRefGoogle Scholar
  29. Führer E (2000) Forest functions, ecosystem stability and management. For Ecol Manag 132(1):29–38CrossRefGoogle Scholar
  30. Gao Y, Dang X, Yu Y, Li Y, Liu Y, Wang J (2016) Effects of tillage methods on soil carbon and wind erosion. Land Degrad Dev 27(3):583–591CrossRefGoogle Scholar
  31. Garfield E (1990) Key-words-plus takes you beyond title words. 2. Expanded journal coverage for current-contents-on-diskette includes social and behavioral-sciences. Current Contents 33:5–9Google Scholar
  32. Guinee JB (2002) Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 7(5):311–313CrossRefGoogle Scholar
  33. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853CrossRefGoogle Scholar
  34. Hertel TW, Golub AA, Jones AD, O’Hare M, Plevin RJ, Kammen DM (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60(3):223–231CrossRefGoogle Scholar
  35. Ho Y, Satoh H, Lin S (2010) Japanese lung cancer research trends and performance in Science Citation Index. Intern Med 49(20):2219–2228CrossRefGoogle Scholar
  36. Hou Q, Mao G, Zhao L, Du H, Zuo J (2015) Mapping the scientific research on life cycle assessment: a bibliometric analysis. Int J Life Cycle Assess 20(4):541–555CrossRefGoogle Scholar
  37. House JI, Colin PI, Le Quéré C (2002) Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob Chang Biol 8(11):1047–1052CrossRefGoogle Scholar
  38. Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, De Palma A, Phillips HR, Senior RA, Bennett DJ, Booth H (2014) The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol Evol 4(24):4701–4735CrossRefGoogle Scholar
  39. Johnes PJ (1996) Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol 183(3–4):323–349CrossRefGoogle Scholar
  40. Katz JSAH (1997) Desktop scientometrics. Scientometrics 38(1):141–153CrossRefGoogle Scholar
  41. Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havránek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 43(19):7297–7302CrossRefGoogle Scholar
  42. Khaledian Y, Kiani F, Ebrahimi S, Brevik EC, Aitkenhead Peterson J (2017) Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad Dev 28(1):128–141CrossRefGoogle Scholar
  43. King DA (2004) The scientific impact of nations. Nature 430(6997):311–316CrossRefGoogle Scholar
  44. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627CrossRefGoogle Scholar
  45. Lambin EF, Geist HJ (2008) Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media, Berlin, pp 1–8Google Scholar
  46. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108(9):3465–3472CrossRefGoogle Scholar
  47. Laurance WF (1999) Reflections on the tropical deforestation crisis. Biol Conserv 91(2):109–117CrossRefGoogle Scholar
  48. Li W, Zhao Y (2015) Bibliometric analysis of global environmental assessment research in a 20-year period. Environ Impact Assess Rev 50:158–166CrossRefGoogle Scholar
  49. Li J, Wang M, Ho Y (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77(1–2):13–20CrossRefGoogle Scholar
  50. Ligmann-Zielinska A (2018) ‘Can you fix it?’ using variance-based sensitivity analysis to reduce the input space of an agent-based model of land use change. In: Thill J-C, Dragicevic S (eds) GeoComputational Analysis and Modeling of Regional Systems, Advances in Geographic Information Science. Springer, Cham, pp 77–99Google Scholar
  51. Ligmann-Zielinska A, Sun L (2010) Applying time-dependent variance-based global sensitivity analysis to represent the dynamics of an agent-based model of land use change. Int J Geogr Inf Sci 24(12):1829–1850CrossRefGoogle Scholar
  52. Liu J, Teng X, Xiao J (1986) Application of shuttle imaging radar data for land use investigations. Remote Sens Environ 19(3):291–301CrossRefGoogle Scholar
  53. Liu J, Ouyang Z, Pimm SL, Raven PH, Wang X, Miao H, Han N (2003) Protecting China's biodiversity. Science 300(5623):1240–1241CrossRefGoogle Scholar
  54. Long H (2014) Land consolidation: an indispensable way of spatial restructuring in rural China. J Geogr Sci 24(2):211–225CrossRefGoogle Scholar
  55. Lovett DK, Stack LJ, Lovell S, Callan J, Flynn B, Hawkins M, Mara FPO (2005) Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. J Dairy Sci 88(8):2836–2842CrossRefGoogle Scholar
  56. Maltby L (2013) Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors. Environ Toxicol Chem 32(5):974–983CrossRefGoogle Scholar
  57. Mancino G, Nolè A, Salvati L, Ferrara A (2016) In-between forest expansion and cropland decline: a revised USLE model for soil erosion risk under land-use change in a Mediterranean region. Ecol Indic 71:544–550CrossRefGoogle Scholar
  58. Mao N, Wang M, Ho Y (2010) A bibliometric study of the trend in articles related to risk assessment published in science citation index. Hum Ecol Risk Assess 16(4):801–824CrossRefGoogle Scholar
  59. Mao G, Liu X, Du H, Zuo J, Wang L (2015) Way forward for alternative energy research: a bibliometric analysis during 1994–2013. Renew Sust Energ Rev 48:276–286CrossRefGoogle Scholar
  60. Meinshausen M, Meinshausen N, Hare W, Raper SC, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242):1158–1162CrossRefGoogle Scholar
  61. Molina-Navarro E, Trolle D, Martínez-Pérez S, Sastre-Merlín A, Jeppesen E (2014) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366CrossRefGoogle Scholar
  62. Mooney HA, Vitousek PM, Matson PA (1987) Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238(4829):926–932CrossRefGoogle Scholar
  63. Moroni S (2018) Property as a human right and property as a special title. Rediscussing private ownership of land. Land Use Policy 70:273–280CrossRefGoogle Scholar
  64. Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci 105(28):9495–9500CrossRefGoogle Scholar
  65. Nature Index (2014) Chinese Academy of Sciences. Nature 516(7531):S56–S57CrossRefGoogle Scholar
  66. Ochoa Quintero JM, Gardner TA, Rosa I, Barros Ferraz SF, Sutherland WJ (2015) Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv Biol 29(2):440–451CrossRefGoogle Scholar
  67. Oliver TH, Morecroft MD (2014) Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip Rev Clim Chang 5(3):317–335CrossRefGoogle Scholar
  68. Pacheco F, Varandas S, Fernandes LS, Junior RV (2014) Soil losses in rural watersheds with environmental land use conflicts. Sci Total Environ 485:110–120CrossRefGoogle Scholar
  69. Persson O (1994) The intellectual base and research fronts of JASIS 1986-1990. J Am Soc Inf Sci 45(1):31–38CrossRefGoogle Scholar
  70. Persson O, Danell R, Schneider JW (2009) How to use Bibexcel for various types of bibliometric analysis. Celebrating scholarly communication studies: a Festschrift for Olle Persson at his 60th birthday, pp 9–24Google Scholar
  71. Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458(7241):1009–1013CrossRefGoogle Scholar
  72. Purdom R, Nokes K (2014) Brazil repeals forest code and deforestation accelerates. Environmental protection, available online at Aspx Last accessed 23 Nov 2014
  73. Redeker KR, Wang NY, Low JC, McMillan A, Tyler SC, Cicerone RJ (2000) Emissions of methyl halides and methane from rice paddies. Science 290(5493):966–969CrossRefGoogle Scholar
  74. Saad R, Margni M, Koellner T, Wittstock B, Deschênes L (2011) Assessment of land use impacts on soil ecological functions: development of spatially differentiated characterization factors within a Canadian context. Int J Life Cycle Assess 16(3):198–211CrossRefGoogle Scholar
  75. Salager-Meyer F (2008) Scientific publishing in developing countries: challenges for the future. J Engl Acad Purp 7(2):121–132CrossRefGoogle Scholar
  76. Saltelli A, Chan K, Scott EM (2000) Sensitivity analysis, 1. Wiley, New YorkGoogle Scholar
  77. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. John Wiley & Sons, Ltd, Chichester, pp 1–312Google Scholar
  78. Sharma S, Thomas VJ (2008) Inter-country R&D efficiency analysis: an application of data envelopment analysis. Scientometrics 76(3):483–501CrossRefGoogle Scholar
  79. Simojoki A, Jaakkola A (2001) Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. Eur J Soil Sci 51(3):413–424CrossRefGoogle Scholar
  80. Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20(3):229–236CrossRefGoogle Scholar
  81. Smith L, Inman A, Lai X, Zhang H, Fanqiao M, Jianbin Z, Burke S, Rahn C, Siciliano G, Haygarth PM (2017) Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land Use Policy 61:208–219CrossRefGoogle Scholar
  82. Song W, Liu M (2017) Farmland conversion decreases regional and national land quality in China. Land Degrad Dev 28(2):459–471CrossRefGoogle Scholar
  83. Stevens N (1933) How plant pathology can contribute to a land utilization program. Phytopathology 23:404–406Google Scholar
  84. Sun J, Wang M, Ho Y (2012) A historical review and bibliometric analysis of research on estuary pollution. Mar Pollut Bull 64(1):13–21CrossRefGoogle Scholar
  85. Tan J, Fu H, Ho Y (2014) A bibliometric analysis of research on proteomics in Science Citation Index Expanded. Scientometrics 98(2):1473–1490CrossRefGoogle Scholar
  86. Teixeira RF, de Souza DM, Curran MP, Antón A, Michelsen O, I Canals LM (2016) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC life cycle initiative preliminary recommendations based on expert contributions. J Clean Prod 112: 4283–4287CrossRefGoogle Scholar
  87. Torres L, Abraham EM, Rubio C, Barbero Sierra C, Ruiz-Pérez M (2015) Desertification research in Argentina. Land Degrad Dev 26(5):433–440CrossRefGoogle Scholar
  88. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104(52):20666–20671CrossRefGoogle Scholar
  89. USDA Agricultural Research Service (USDA-ARS) and Texas A&M AgriLife Research (2018) SWAT-Soil & Water Assessment Tool (, Grassland, Soil & Water Research Laboratory, USDA-ARS, Texas, USA
  90. Verburg PH, Tabeau A, Hatna E (2013) Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: a study for land use in Europe. J Environ Manag 127:S132–S144CrossRefGoogle Scholar
  91. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499CrossRefGoogle Scholar
  92. Walters BB (2017) Explaining rural land use change and reforestation: a causal-historical approach. Land Use Policy 67:608–624CrossRefGoogle Scholar
  93. Wilson CM, Matthews WH (1970) Man’s impact on the global environment. Report of the Study of Critical Environmental Problems (SCEP). MIT Press, CambridgeGoogle Scholar
  94. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827CrossRefGoogle Scholar
  95. Xie SD, Zhang J, Ho YS (2008) Assessment of world aerosol research trends by bibliometric analysis. Scientometrics 77(1):113–130CrossRefGoogle Scholar
  96. Xiong X, Grunwald S, Myers DB, Ross CW, Harris WG, Comerford NB (2014) Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci Total Environ 493:974–982CrossRefGoogle Scholar
  97. Xu W, Xiao Y, Zhang J, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu J, Polasky S (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proc Natl Acad Sci 114(7):1601–1606CrossRefGoogle Scholar
  98. Yan W, Yin C, Zhang S (1999) Nutrient budgets and biogeochemistry in an experimental agricultural watershed in southeastern China. Biogeochemistry 45(1):1–19Google Scholar
  99. Yang W (2013) Research integrity in China. Science 342(6162):1019CrossRefGoogle Scholar
  100. Yang R, Xu Q, Long H (2016) Spatial distribution characteristics and optimized reconstruction analysis of China’s rural settlements during the process of rapid urbanization. J Rural Stud 47:413–424CrossRefGoogle Scholar
  101. Zare M, Panagopoulos T, Loures L (2017) Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 67:558–572CrossRefGoogle Scholar
  102. Zhang G, Xie S, Ho Y (2010) A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 83(2):477–492CrossRefGoogle Scholar
  103. Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X (2015) A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics 105(2):863–882CrossRefGoogle Scholar
  104. Zheng T, Wang J, Wang Q, Nie C, Shi Z, Wang X, Gao Z (2016) A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects. Scientometrics 109(1):53–71CrossRefGoogle Scholar
  105. Zheng T, Wang J, Wang Q, Meng H, Wang L (2017a) Research trends in electrochemical technology for water and wastewater treatment. Appl Water Sci 7(1):13–30CrossRefGoogle Scholar
  106. Zheng T, Li P, Shi Z, Liu J (2017b) Benchmarking the scientific research on wastewater-energy nexus by using bibliometric analysis. Environ Sci Pollut Res 24(35):27613–27630CrossRefGoogle Scholar
  107. Zheng T, Li P, Wu W, Liu J, Shi Z, Guo X, Liu J (2018) State of the art on granular sludge by using bibliometric analysis. Appl Microbiol Biotechnol 102(8):3453–3473CrossRefGoogle Scholar
  108. Zhou P, Leydesdorff L (2006) The emergence of China as a leading nation in science. Res Policy 35(1):83–104CrossRefGoogle Scholar
  109. Zyoud SH, Fuchs-Hanusch D (2017a) Estimates of Arab world research productivity associated with groundwater: a bibliometric analysis. Appl Water Sci 7(3):1255–1272CrossRefGoogle Scholar
  110. Zyoud SH, Fuchs-Hanusch D (2017b) A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst Appl 78:158–181CrossRefGoogle Scholar
  111. Zyoud SH, Al-Rawajfeh AE, Shaheen HQ, Fuchs-Hanusch D (2016) Benchmarking the scientific output of industrial wastewater research in Arab world by utilizing bibliometric techniques. Environ Sci Pollut Res 23(10):10288–10300CrossRefGoogle Scholar
  112. Zyoud SH, Fuchs-Hanusch D, Zyoud SH, Al-Rawajfeh AE, Shaheen HQ (2017) A bibliometric-based evaluation on environmental research in the Arab world. Int J Environ Sci Technol 14(4):689–706CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Land Surveying and Planning Institute of Inner Mongolia Autonomous RegionHohhotChina
  2. 2.College of Energy and Power EngineeringInner Mongolia University of TechnologyHohhotChina
  3. 3.State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  4. 4.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia

Personalised recommendations