Environmental Science and Pollution Research

, Volume 25, Issue 26, pp 26228–26245 | Cite as

Assessment of vulnerability and control measures to protect the Salbarua ecosystem from hypothetical spill sites

  • Jaime GárfiasEmail author
  • Hilario Llanos
  • Richard Martel
  • Javier Salas-García
  • Luvina Bibiano-Cruz
Research Article


Population pressure, urbanization, and industrial developments, among other factors, have resulted in severe degradation of environmental resources such as wetlands. Thus, a groundwater model (MODFLOW) was integrated with a particle tracking MODPATH model to simulate the hydrodynamic flow head field and to analyze the vulnerability of the Salburua ecosystem and propose control measures to protect the riparian area. The simulations show that pathways of particle tracking originating at potential contaminant sources will tend to migrate downwards towards the sensitive ecosystem, which suggests that the quality of the hydrological ecosystem is likely to deteriorate in the future. Variation in exit points of particles indicates that the time-related capture areas are affected by changes of the hydraulic gradients. Two control measures of potential sources of pollutants in the vicinity of the Salbarua ecosystem were analyzed. The study results suggest that the travel time-related capture zone with a funnel-and-gate system is much smaller than without the control alternative, which indicates that the gate configuration has an effect on capture zone size and shape and on the residence time with a better attenuation performance. It is also shown that a leakage-proof barrier is less effective for point-source containment, assuming that hydraulic control performance and cost-efficiency are the criteria for pollution control effectiveness. Instead, a program of monitoring wells would effectively characterize water quality in the aquifer and provide a decision support system. This approach may be used in helping water managers to develop more physically based and quantitative protection strategies.


Salburua ecosystem Numerical modeling Risk pollution Travel time-related capture zone Control measures MODFLOW MODPATH Particle tracking 



The authors would like to acknowledge the support of the National Institute of Meteorology (INM) for providing all data and primary information on the studied Quaternary system. The authors are also grateful to the University of the Basque Country, CONACyT (Consejo Nacional de Ciencia y Tecnología de México), the Consejo Mexiquense de Ciencia y Tecnología (COMECYT), and the Autonomous University of the State of Mexico (UAEM) for supporting this research. We are also immensely grateful to Jennifer Hancox and Amanda Sills for their review and comments on an earlier version of the manuscript. The authors are grateful to the reviewers for their helpful comments and suggestions, which improved the final quality of the paper.


  1. Abalos-Villaro B (1989) Estudio hidrogeológico preliminar del cuaternario de Vitoria. Bol Geol Min 100(2):227–247Google Scholar
  2. Abid K, Zouari K, Dulinski M, Chkir N, Abidi B (2011) Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia). Hydrogeol J 19:415–427CrossRefGoogle Scholar
  3. Allen DJ, Darling WG, Gooddy DC, Lapworth DJ, Newell AJ, Williams AT, Allen D, Abesser C (2010) Interaction between groundwater, the hyporheic zone and a chalk stream: a case study from the river Lambourn, UK. Hydrogeol J 18:1125–1141CrossRefGoogle Scholar
  4. Arrate I (1994) Estudio hidrogeológico del acuífero cuaternario de Vitoria-Gasteiz (Araba, País Vasco). Thesis (PhD). University of the Basque Country (UPV-EHU)Google Scholar
  5. Arrate I, Sánchez-Pérez JM, Antigüedad I, Vallecillo MA, Iribar V, Ruíz M (1997) Groundwater pollution in quaternary aquifer of Vitoria-Gasteiz (Basque Country, Spain). Environ Geol 30:257–265CrossRefGoogle Scholar
  6. Banks EW, Simmons CT, Love AJ, Cranswick R, Werner AD, Bestland EA, Wood M, Wilson T (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeol J 17:1969–1989CrossRefGoogle Scholar
  7. Barry F, Ophori D, Hoffman J, Canace R (2009) Groundwater flow and capture zone analysis of the Central Passaic River basin, New Jersey. Environ Geol 56:1593–1603CrossRefGoogle Scholar
  8. Bayer P, Finkel M, Teutsch G (2004) Combining pump-and-treat and physical barriers for contaminant plume control. Ground Water 42(6):856–867. CrossRefGoogle Scholar
  9. Bradbury KR, Rayne TW, Muldoon MA, Roffers PD (1998) Application of a discrete fracture flow model for wellhead protection at Sturgeon Bay, Wisconsin. Wisconsin Geol Nat Hist Surv Open File Rep, pp 98–04Google Scholar
  10. Candela L, Elorza FJ, Tamoh K, Jiménez-Martínez J, Aureli A (2014) Groundwater modelling with limited data sets: the Chari-Logone area (Lake Chad Basin, Chad). Hydrol Process 28(11):3714–3727CrossRefGoogle Scholar
  11. Carlson D (2007) Estimate of vertical anisotropy of hydraulic conductivity for northern Louisiana aquifers from grain-size data. Proceedings of Baton Rouge Geological Society's 1st Annual Louisiana Groundwater Symposium, Baton Rouge, Louisiana, vol 1, pp 32–42Google Scholar
  12. Cey EE, Rudolph DL, Aravena R, Parkin G (1999) Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J Contam Hydrol 37:45–67CrossRefGoogle Scholar
  13. Cheng Q, Wang R, Huang W, Wang W, Li X (2015) Assessment of heavy metal contamination in the sediments from the Yellow River wetland National Nature Reserve (the Sanmenxia section), China. Environ Sci Pollut Res 1:1–8Google Scholar
  14. Correll DL (1996) Buffer zones and water quality protection: general principles. In: Buffer zones: their processes and potential in water protection. Proceedings of the international conference on buffer zones. Samara Publishing Limited, Tresaith, pp 7–20Google Scholar
  15. Crowe AS, Steven G, Shikaze SG, Carol J, Ptacek CJ (2004) Numerical modelling of groundwater flow and contaminant transport to point Pelee marsh, Ontario, Canada. Hydrol Process 18:293–314CrossRefGoogle Scholar
  16. Cui B, He Q, Gu B, Bai J, Liu X (2016) China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36(Suppl 1):S1–S9CrossRefGoogle Scholar
  17. Delottier H, Pryet A, Dupuy A (2017) Why should practitioners be concerned about predictive uncertainty of groundwater management models? Water Resour Manag 31(1):61–73CrossRefGoogle Scholar
  18. Dong Y, Xu H, Guomin L (2013) Wellhead protection area delineation using multiple methods: a case study in Beijing. Environ Earth Sci 70:481–488CrossRefGoogle Scholar
  19. Durán JJ, García de Domingo A, López-Geta JA, Soria JM (2004) Caracterización geológica e hidrogeológica de los humedales españoles de importancia internacional. In: Proc. XXXIII Congress of IAH-ALHSUD, Zacatecas, Mexico. Conference on groundwater flow understanding from local to regional scales. Zacatecas, MéxicoGoogle Scholar
  20. Epelde AM, Cerro I, Sánchez-Pérez JM, Sauvage S, Srinivasan R, Antigüedad I (2015) Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrol Sci J 60(5):825–843Google Scholar
  21. EVE (1996) Mapa hidrogeológico del País Vasco a escala 1:100.000. Ente Vasco de la Energía – Basque Energy Agency, 377 pp + mapsGoogle Scholar
  22. Feng S, Huo Z, Kang S, Tang Z, Wang F (2011) Groundwater simulation using a numerical model under different water resources management scenarios in an arid region of China. Environ Earth Sci 62:961–971CrossRefGoogle Scholar
  23. Forster CB, Lachmar TE, Oliver DS (1997) Comparison of models for delineating wellhead protection areas in confined to semiconfined aquifers in alluvial basins. Ground Water 35(4):689–697CrossRefGoogle Scholar
  24. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Canada Inc., Toronto 552 pGoogle Scholar
  25. García-Linares C, Martínez-Santos M, Martínez-Bilbao V, Sánchez-Pérez JM, Antigüedad I (2003) Wetland restoration and nitrate reduction: the example of the periurban wetland of Vitoria-Gasteiz (Basque Country, North Spain). Hydrol Earth Syst Sci 7(1):109–121CrossRefGoogle Scholar
  26. Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551CrossRefGoogle Scholar
  27. Haria AH, Shand P (2006) Near-stream soil water-groundwater coupling in the headwaters of the Afon Hafren, Wales: implications for surface water quality. J Hydrol 331:567–579CrossRefGoogle Scholar
  28. Harou JJ, Lund JR (2008) Representing groundwater in water management models - applications in California. Tech. Rep., California Energy Commission, PIER energy–related environmental research program, CEC-500-2008-092, University of California, Davis, CA, EUAGoogle Scholar
  29. Karakuş H, Aydin H, Erdem O (2017) A hydrologic restoration attempt of the dried Akgöl wetland (central Anatolia, Turkey). Wetlands 37:837–850CrossRefGoogle Scholar
  30. Liang J, Liu J, Yuan X, Zeng G, Lai X, Li X, Wu H, Yuan Y, Li F (2014) Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-South China. J Environ Sci Health A 50(1):100–108CrossRefGoogle Scholar
  31. Lu XH, Jin MG, van Genuchten MT (2011) Groundwater recharge at five representative sites in the Hebei plain, China. Ground Water 49(2):286–294CrossRefGoogle Scholar
  32. Mahmoudpour M, Khamehchiyan M, Nikudel MR, Ghassemi MR (2016) Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. J Eng Geol 201:6–28CrossRefGoogle Scholar
  33. Maître V, Cosandey AC, Desagher E, Parriaux A (2003) Effectiveness of groundwater nitrate removal in a river riparian area: the importance of hydrogeological conditions. J Hydrol 278:76–93CrossRefGoogle Scholar
  34. Maître V, Cosandey AC, Parriaux A, Guenat C (2005) Wetlands and aquatic processes. A methodology to estimate the denitrifying capacity of a riparian wetland. J Environ Qual 34:707–716CrossRefGoogle Scholar
  35. Mansell RS, Bloom SA, Sun G (2000) A model for wetland hydrology: description and validation. Soil Sci 165:384–397CrossRefGoogle Scholar
  36. Martínez M (2008) Dinámica espacio-temporal de la calidad de las aguas de la Zona Vulnerable de Vitoria-Gasteiz (País Vasco). Funcionalidad del Humedal de Salburua en la atenuación de nitratos. Ph.D. thesis, Univ. Basque Country, Spain, 307 pGoogle Scholar
  37. Martínez-Santos M, Ruíz-Romera E, Martínez-López M, Antigüedad I (2012) Influence of upwelling on the shallow water chemistry in a small wetland riparian zone (Basque Country). Appl Geochem 27:854–865CrossRefGoogle Scholar
  38. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. Techniques of water-resources investigations of the United States geological survey, book 6, Chapter A1, 586 pGoogle Scholar
  39. Mohamed MM, Al-Suwaidi N, Ebraheem A, Al Mulla M (2016) Groundwater modeling as a precursor tool for water resources sustainability in Khatt area, UAE. Environ Earth Sci 75(5):400CrossRefGoogle Scholar
  40. Mylopoulos N, Mylopoulos Y, Tolikas D, Veranis N (2007) Groundwater modeling and management in a complex lake-aquifer system. Water Resour Manag 21(2):469–494CrossRefGoogle Scholar
  41. Nwankwor GI, Anyaogu CN (2000) Hydrologic characteristics of a small tropical riverine wetland at Ulakwo. Imo state, Nigeria. Hydrogeol J 8:646–653CrossRefGoogle Scholar
  42. Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation. Waterloo Press, Portland, p 522Google Scholar
  43. Paradis D, Martel R, Karanta G, Lefebvre R, Michaud Y, Therrien R, Nastev M (2007) Comparative study of methods for WHPA delineation. Ground Water 45(2):158–167CrossRefGoogle Scholar
  44. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US: geological survey finite-difference ground-water flow model. US Department of InteriorGoogle Scholar
  45. Ramírez del Pozo J (1973) Síntesis Geológica de la Provincia de Alava. Edit. Dpto. de Obras Sociales de la Caja Municipal de Ahorros de Alava, Vitoria-Gasteiz, 90 pGoogle Scholar
  46. Rayne TW, Bradbury KR, Muldoon MA (2001) Delineation of capture zones for municipal wells in fractured dolomite, Sturgeon Bay, Wisconsin, USA. Hydrogeol J 9(5):432–450CrossRefGoogle Scholar
  47. Restrepo JI, Montoya AM, Obeyeskera J (1998) A wetland simulation module for the MODFLOW ground water model. Ground Water 36:764–770CrossRefGoogle Scholar
  48. Rosenberry DO (2008) A seepage meter designed for use in flowing water. J Hydrol 359(1–2):118–130CrossRefGoogle Scholar
  49. Sahu P, Michael HA, Voss CI, Sikdar P (2013) Impacts on groundwater recharge areas of megacity pumping: analysis of potential contamination of Kolkata, India, water supply. Hydrol Sci J 58(6):1340–1360CrossRefGoogle Scholar
  50. Sánchez-Pérez JM, Antigüedad I, Arrate I, García-Linares C, Morell I (2003) The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case study. Sci Total Environ 317:173–187CrossRefGoogle Scholar
  51. Schlumberger Water Services (2010) Visual MODFLOW, modular three-dimensional finite-difference groundwater flow model, Version 2010.1. Schlumberger Water Services, Waterloo, Ontario, 676 pGoogle Scholar
  52. Schoups G, Addams CL, Minjares JL, Gorelick SM (2006) Sustainable conjunctive water management in irrigated agriculture: model formulation and application to the Yaqui Valley, Mexico. Water Resour Res 42(10):W10417CrossRefGoogle Scholar
  53. Starr RC and Cherry JA (1990) In situ barriers for groundwater pollution control. Presented at 'Prevention and treatment of soil and groundwater in the petroleum refining and distribution Industry', Montreal, Quebec, October 16 & 17, 1990Google Scholar
  54. Starr RC, Cherry JA (1994) In situ remediation of contaminated ground water: the funnel-and-gate-system. Ground Water 32:465–476CrossRefGoogle Scholar
  55. Stratford CJ, Acreman MC, Rees HG (2011) A simple method for assessing the vulnerability of wetland ecosystem services. Hydrol Sci J 56(8):1485–1500CrossRefGoogle Scholar
  56. Swanson SK (1996) A comparison of two methods used to estimate groundwater recharge in Dane County, Wisconsin. MSc thesis, University of Wisconsin, MadisonGoogle Scholar
  57. Yu KF, Lehmkuhl F, Falk D (2017) Quantifying land degradation in the Zoige Basin, NE Tibetan plateau using satellite remote sensing data. J Mt Sci 14(1):77–93. CrossRefGoogle Scholar
  58. Yuan LR, Xin P, Kong J, Li L, Lockington D (2011) A coupled model for simulating surface water and groundwater interactions in coastal wetland. Hydrol Process 25:3533–3546CrossRefGoogle Scholar
  59. Zhou Y, Jiang Y, An D, Ma Z, Xi B, Yang Y, Li M, Hao F, Lian X (2014) Simulation on forecast and control for groundwater contamination of hazardous waste landfill. Environ Earth Sci 72(10):4097–4104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering (CIRA)Autonomous University of the State of MexicoTolucaMexico
  2. 2.Department of GeodynamicsUniversity of the Basque CountryVitoria-GasteizSpain
  3. 3.Institut National de la Recherche Scientifique (INRS-ETE)QuébecCanada

Personalised recommendations