Skip to main content
Log in

Removal of aromatic and hydrophobic fractions of natural organic matter (NOM) using surfactant modified magnetic nanoadsorbents (MNPs)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigated the potential of surfactant modified magnetic nanoadsorbents (MNPs) for the removal of aromatic and hydrophobic fractions of natural organic matter (NOM), leading to the formation of trihalomethanes (THMs) in chlorinated drinking water. Co-precipitation method was used for the synthesis of MNPs. However, MNPs have a tendency to form an agglomeration. Therefore, polyethylene glycol (PEG) was used as a surface modifier to reduce the agglomeration. The PEG-coated MNPs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), BET surface area, X-ray diffraction (XRD), Fourier transform spectrometer (FTIR), and zeta (ζ) potential. FESEM observation indicates that PEG-coated MNPs were spherical in shape and 25 nm in size. Zeta potential values (− 58.35 to − 74.9 mV) indicated excellent stability of PEG-MNPs. FTIR spectra indicated the presence of a −CH2 group, responsible for the chemical interaction between aromatic and humic content. Batch experiments were conducted by studying the effect of pH, contact time, and adsorbent dosage on NOM removal. Excellent removal of DOC (94.49%) and UV254 (89.32%) was observed at the optimum dose of adsorbent (0.75 g/L) and at pH 7.0. Adsorption kinetics followed pseudo-second-order reaction (R2, 0.973) and occurs by multilayer chemisorption which is due to the chemical interaction between aromatic and humic compounds of NOM with MNPs. Thus, MNPs showed great potential as a novel adsorbent for the removal of aromatic and hydrophobic compounds of NOM and can significantly be used to curtail the problem of THMs in drinking water supplies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam F, Chua J-H (2004) The adsorption of palmytic acid on rice husk ash chemically modified with Al(III) ion using the sol–gel technique. J Colloid Interface Sci 280(1):55–61

    Article  CAS  Google Scholar 

  • Adami S, Fakhri A (2013) Adsorption of 4-chloro-2-nitrophenol by zero valent iron nanoparticles and Pd-doped zero valent iron nanoparticles surfaces: isotherm kinetic and mechanism modeling. J Phys Chem Biophys 3(2). https://doi.org/10.4172/2161-0398.1000115

  • Agarwal AK, Kadu MS, Pandhurnekar CP, Muthreja IL (2014) Langmuir Freundlich and BET adsorption isotherm studies for zinc ions onto coal fly ash. IJAIEM 3(1):64–71

  • Aharoni C, Sparks DL, Levinson S, Ravina I (1991) Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models. Soil Sci Soc Am J 55:1307–1312

    Article  CAS  Google Scholar 

  • Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51:343–351

    Article  CAS  Google Scholar 

  • Ali I, AL-Othman ZA, Alwarthan A (2016) Molecular uptake of Congo red dye from water on iron composite nano particles. J Mol Liq 224:171–176

    Article  CAS  Google Scholar 

  • Ali I, Alothman ZA, Alwarthan A (2017) Uptake of propranolol on ionic liquid iron nanocomposite adsorbent: kinetic thermodynamics and mechanism of adsorption. J Mol Liq 236:205–213

    Article  CAS  Google Scholar 

  • Ambasthaa RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Hazard Mater 80:38–49

    Article  CAS  Google Scholar 

  • Anshup PT (2009) Nobel metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewaters, 22nd edn. American Public Health Association, American Water Works Association Water Environment Federation, Washington DC

    Google Scholar 

  • Bayramoglu G, Adiguzel N, Ersoy G, Yilmaz M, Arica MY (2013) Removal of textile dyes from aqueous solution using amine-modified plant biomass of A caricum: equilibrium and kinetic studies. Water Air Soil Pollut 224:1–16

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from the effluent using bone char. Water Res 35:605–612

    Article  CAS  Google Scholar 

  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure properties reactions occurrences and uses. Second Completely Revised and Extended Edition. Wiley VCH Verlag Gmb H & Co KGaA, Weinheim

    Book  Google Scholar 

  • Covelo EF, Andrade ML, Vega FA (2004) Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J Colloid Interface Sci 280:1–8

    Article  CAS  Google Scholar 

  • Daifullah AAM, Girgis BS, Gad HMH (2004) A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloid Surf A Physicochem Eng Asp 235:1–10

    Article  CAS  Google Scholar 

  • Davis JA, Gloor R (1981) Adsorption of dissolved organics in lake water by aluminum oxide effect of molecular weight. Environ Sci Technol 15(10):1223–1229

    Article  CAS  Google Scholar 

  • Dong C, Chen W, Liu C (2014) Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution. Appl Surf Sci 292:1067–1076

    Article  CAS  Google Scholar 

  • Doulia D, Leodopoulos C, Gimouhopoulos K, Rigas F (2009) Adsorption of humic acid on acid-activated Greek bentonite. J Colloid Interface Sci 340:131–141

    Article  CAS  Google Scholar 

  • Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for ground water treatment. Environ Sci Technol 35(24):4922–4926

    Article  CAS  Google Scholar 

  • Elliott D, Lien HL, Zhang WX (2008) Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Qual 37:2192–2201

    Article  CAS  Google Scholar 

  • Esmaeili H, Ebrahimi A, Haijan M, Pourzamani HR (2012) Kinetic and isotherm studies of humic acid adsorption onto iron oxide magnetic nanoparticles in aqueous solutions. Int J Environ Health Eng 1:1–9

    Article  Google Scholar 

  • Fabris R, Chow CWK, Drikas M, Eikebrokk B (2008) Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res 42:4188–4196

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Adsorption in solution. Phys Chem 57:384–410

    Google Scholar 

  • Indiana García (2011) Removal of natural organic matter to reduce the presence of trihalomethanes in drinking water, Doctoral Thesis School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm

  • Gholami A, Moghadassi AR, Hosseini SM, Shabani S, Gholami F (2014) Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J Ind Eng Chem 20(4):1517–1522

    Article  CAS  Google Scholar 

  • Gomes da Silva D, Toma SH, Melo FM, Carvalho LVC, Magalhaes A, Sabadini E, Santos AD, Araki K, Toma HE (2016) Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents. J Magn Magn Mater 397:28–32

    Article  CAS  Google Scholar 

  • Graham NJD (1999) Removal of humic substances by oxidation/biofiltration processes—a review. Water Sci Technol 40(9):141–148

    Article  CAS  Google Scholar 

  • Greenwood R, Kendall K (1999) Electroacoustic studies of moderately concentrated colloidal suspensions. J Eur Ceram Soc 19(4):479–488

    Article  CAS  Google Scholar 

  • Gupta VK, Gupta M, Sharma S (2001) Process development for the removal of lead and chromium from aqueous solutions using red mudan aluminium industry waste. Water Res 35:1125–1134

    Article  CAS  Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937

    Article  CAS  Google Scholar 

  • Hao YM, Man C, Hu ZB (2010) Effective removal of Cu(II) ions from aqueous solution by amino- unctionalized magnetic nanoparticles. J Hazard Mater 184:392–399

    Article  CAS  Google Scholar 

  • He F, Zhao DY (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hu J, Chen GH, Lo-Irene MC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  CAS  Google Scholar 

  • Iida H, Takayanagi K, Nakanishi T, Osaka TJ (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties 14 by controlled hydrolysis. J Colloid Interface Sci 314:274–280

    Article  CAS  Google Scholar 

  • Illies E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295:15–123

    Google Scholar 

  • Iriarte U, Alvarez-Uriarte JI, Lopez-Fonseca R, Gonzalez-Velasco JR (2003) Trihalomethane formation in ozonated and chlorinated surface water. Environ Chem Lett 1:57–61

    Article  CAS  Google Scholar 

  • Kabsch-Korbutowicz M (2005) Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination 185(1–3):327–333

    Article  CAS  Google Scholar 

  • Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90

    CAS  Google Scholar 

  • Kanel S, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    Article  CAS  Google Scholar 

  • Lan Q, Chao L, Yang F, Liu SY, Xu J, Sun DJ (2007) Synthesis of bilayer oleic acid coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Interface Sci 310:260–269

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lee JH, Lee HB, Andrade JD (1995) Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci 20:1043–1079

    Article  CAS  Google Scholar 

  • Li JP, Lin QY, Zhang XH, Yan Y (2009a) Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass. J Colloid Interface Sci 333:71–77

    Article  CAS  Google Scholar 

  • Li S, Yan W, Zhang WX (2009b) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11(10):1618–1626

    Article  CAS  Google Scholar 

  • Liu ZL, Wang HB, Lu QH, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283:258–262

    Article  CAS  Google Scholar 

  • Mamani JB, Gamarra LF, Espósito de Souza Brito G (2014) Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications. Mater Res 17(3):542–549

    Article  CAS  Google Scholar 

  • Mansurova RR, Safronova AP, Lakizaa NV (2016) Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxide in aqueous medium. Russ J Phys Chem 90(6):1200–1205

    Article  CAS  Google Scholar 

  • Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–365

    Article  CAS  Google Scholar 

  • Murphy EM, Zachara JM, Smith SC (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol 24:1507–1516

    Article  CAS  Google Scholar 

  • Mutasim IK (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron (III) salts as precursors. Arab J Chem 8(2):279–284

    Article  CAS  Google Scholar 

  • Nie Y, Hu C, Zhou L, Qu J, Wei Q, Wang D (2010) Degradation characteristics of humic acid over iron oxides/Fe0 core–shell nanoparticles with UVA/H2O2. J Hazard Mater 173:474–479

    Article  CAS  Google Scholar 

  • Nikolaou AD, Golfinopoulos SK, Lekkas TD, Arhonditsis GB (2004) Factors affecting the formation of organic byproducts during water chlorination: a bench-scale study. Water Air Soil Pollut 159:357–371

    Article  CAS  Google Scholar 

  • Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30(50):15266–15276

    Article  CAS  Google Scholar 

  • Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly (ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62:81–87

    Article  CAS  Google Scholar 

  • Perez-Marin AB, Zapata VM, Ortuno JF, Aguilar M, Saez J, Llorens M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139:122–131

    Article  CAS  Google Scholar 

  • Pikkarainen AT, Judd SJ, Jokela J, Gillberg L (2004) Pre-coagulations for microfiltration of an upland surface water. Water Res 38:455–465

    Article  CAS  Google Scholar 

  • Raji C, Anirudhan TS (1998) Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Res 32:3772–3780

    Article  CAS  Google Scholar 

  • Salman M, El-Eswed B, Khalili F (2007) Adsorption of humic acid on bentonite. Appl Clay Sci 38:51–56

    Article  CAS  Google Scholar 

  • Sharp EL, Jarvis P, Parsons SA, Jefferson B (2006a) Impact of fractional character on the coagulation of NOM. Colloids Surf A Physicochem Eng Asp 286:104–111

    Article  CAS  Google Scholar 

  • Sharp EL, Parsons SA, Jefferson B (2006b) Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Sci Total Environ 363:183–194

    Article  CAS  Google Scholar 

  • Shen YF, Tanga J, Niea ZH, Wanga YD, Renc Y, Zuoa L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    Article  CAS  Google Scholar 

  • Soltani RDC, Jafari AJ, Khorramabadi GS (2009) Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge. Am J Environ Sci 5:41–46

    Article  CAS  Google Scholar 

  • Tipping E (1981) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta 45:191–199

    Article  CAS  Google Scholar 

  • Toroz I, Uyak V (2005) Seasonal variations of trihalomethanes (THMs) within water distribution networks of Istanbul City. Desalination 176:127–141

    Article  CAS  Google Scholar 

  • Ulucan K, Noberi C, Coskun T, Bulent CU, Debik E, Kaya C (2013) Disinfection by-products removal by nanoparticles sintered in zeolite. JOCET 1(2):120–123

  • Volk K, Bell K, Ibrahim E, Verges D, Amy G, Lechevallier M (2000) Impact of enhanced and optimized coagulation on the removal of organic matter and its biodegradable fraction in drinking water. Water Res 34(12):3247–3257

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Hanafiah MAKM, Yong SS (2008) Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies. Colloids Surf B: Biointerfaces 65:18–24

    Article  CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Wang J, Tian H, Ji Y (2015) Adsorption behavior and mechanism of humic acid on aminated magnetic nanoadsorbent. Sep Sci Technol 50(9):1285–1293

    Article  CAS  Google Scholar 

  • Wei Y, Bing Han B, Hu X, Lin Y, Wang X, Deng X (2012) Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng 27:632–637

    Article  CAS  Google Scholar 

  • Xiao J, Yue Q, Gao B, Sun Y, Kong J, Gao Y, Li Q, Wang Y (2014) Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chem Eng J 253:63–72

    Article  CAS  Google Scholar 

  • Xiao J, Gao B, Yue Gao QY, Li Q (2015) Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: characterization kinetics and mechanism. Chem Eng J 262:1226–1236

    Article  CAS  Google Scholar 

  • Xu J, Dozier A, Bhattacharyya D (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7(4):449–467

    Article  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX (2012) Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium kinetic thermodynamic and mechanisms analysis. Chem Eng J 203:423–431

    Article  CAS  Google Scholar 

  • Yadava KP, Tyagi BS, Singh VN (1991) Effect of temperature on the removal of lead (II) by adsorption on China clay and wollastonite. J Chem Technol Biotechnol 51:47–60

    Article  CAS  Google Scholar 

  • Yan M, Wang D, Ni J, Qu J, Wenjin N, Van Leeuwen J (2009) Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: targets and techniques. Sep Purif Technol 68:320–327

    Article  CAS  Google Scholar 

  • Zhan Y, Zhu Z, Lin J, Qiu Y, Zhao J (2010) Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. J Environ Sci 22:1327–1334

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang X, Qian J, Pan B (2016) Fabrication of novel magnetic nanoparticles of multi-functionality for water decontamination. Environ Sci Technol 50(2):881–889

    Article  CAS  Google Scholar 

  • Zhao L, Luo F, Wasikiewicz JM, Mitomo H, Nagasawa N, Yagi T, Tamada M, Fumio Y (2008) Adsorption of humic acid from aqueous solution onto irradiation-cross linked carboxymethylchitosan. Bioresour Technol 99:1911–1917

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the financial support from Indian Institute of Technology (ISM) Dhanbad under Junior Research Fellowship scheme for carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minashree Kumari.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M., Gupta, S.K. Removal of aromatic and hydrophobic fractions of natural organic matter (NOM) using surfactant modified magnetic nanoadsorbents (MNPs). Environ Sci Pollut Res 25, 25565–25579 (2018). https://doi.org/10.1007/s11356-018-2611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2611-0

Keywords

Navigation