Skip to main content
Log in

Critical analysis and mapping of research trends and impact assessment of polyaromatic hydrocarbon accumulation in leaves: let history tell the future

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The article is basically an attempt to provide a consolidated report on impact assessment and trends in research pertaining to accumulation and curbing the menace of polyaromatic hydrocarbon (PAH) accumulation in leaves. Emphasis is given to understand the consequences of the fact that edible/medicinal plants cultivated in PAH contaminated soil or close to such places which are potential liberators of PAHs can virtually act as transporters for direct PAH entry into biological systems. An attempt has been made to predict the future by digging out golden facts from history. Extensive Scopus-based data mining has been done to dig out research data since last 10 years (2006–2016) pertaining to the said area. Critical analysis of statistical data on research trends highlighting the different aspects of evaluation of PAH accumulation in leaves has been described. The concentrate of all researches for the said period have been presented as few golden principles which shall serve as important facts for researchers and policy makers for curbing the menace of PAH-induced oxidative stress in plants and shall also provide start-up ideas for researchers new to the area. Critical analysis of trends in phytoremediation aspect has also been duly highlighted to measure the intensity of restoration steps taken by researchers and government to safeguard the future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition an oxidative stress in tomato. J Exp Bot 64(1):199–213

    Article  CAS  Google Scholar 

  • Ahammed GJ, Wang MM, Zhou YH, Xia X, Mao WH, Shi K, Yu QJ (2012) The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress. Ecotoxicol Environ Saf 80:132–139

    Article  CAS  Google Scholar 

  • Ahmadi H, Bolinius DJ, Jahnke A, MacLeod M (2016) Mass transfer of hydrophobic organic chemicals between silicone sheets and through plant leaves and low-density polyethylene. Chemosphere 164:683–690

    Article  CAS  Google Scholar 

  • Al Dine EJ, Mokbel H, Elmoll A, Massemin S, Vuilleumier S, Toufaily J, Hanieh T, Millet M (2015) Concomitant evaluation of atmospheric levels of polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons in Strasbourg (France) using pine needle passive samplers. Environ Sci Pollut Res 22:17850–17859. https://doi.org/10.1007/s11356-015-5030-5

    Article  CAS  Google Scholar 

  • Alagic SC, Maluckov BS, Radojicic VB (2014) How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Techn Environ Policy 17:597–614

    Article  CAS  Google Scholar 

  • Al-Dabbas MA, Ali LA, Afaj AH (2015) Comparison of the polycyclic aromatic hydrocarbons and heavy metal concentrations in soil and leaves of eucalyptus plants at Kirkuk, Iraq. Arab J Geosci 8:4755–4763

    Article  CAS  Google Scholar 

  • Apostolopoulou M-V, Monteyne E, Krikonis K, Pavlopoulos K, Roose P, Dehairs F (2014) Monitoring polycyclic aromatic hydrocarbons in the Northeast Aegean Sea using Posidonia oceanica seagrass and synthetic passive samplers. Mar Pollut Bull 87:338–344

    Article  CAS  Google Scholar 

  • Baldantoni D, De Nicola F, Alfani A (2014) Air biomonitoring of heavy metals and polycyclic aromatic hydrocarbons near a cement plant. Atmos Pollut Res 5:262–269

    Article  CAS  Google Scholar 

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20(7):4311–4326

    Article  CAS  Google Scholar 

  • Cui Y, Zhang W, Sun H, Wu WM, Zoul X (2015) Polycyclic aromatic hydrocarbon accumulation in Phragmites australis grown on constructed wetland for sludge stabilization. J Residuals Sci Tech 12(4):215–220

    Article  CAS  Google Scholar 

  • De Boer J, Wagelmans M (2016) Polycyclic aromatic hydrocarbons in soil—practical options for remediation. Clean—Soil, Air, Water 44(6):587–738

    Google Scholar 

  • De Nicola F, Alfani A, Maisto G (2014) Polycyclic aromatic hydrocarbon contamination in an urban area assessed by Quercus ilex leaves and soil. Environ Sci Pollut Res 21:7616–2623. https://doi.org/10.1007/s11356-014-2665-6

    Article  CAS  Google Scholar 

  • De Nicola F, Baldantoni D, Sessa L, Monaci F, Bargagli R, Alfani A (2015) Distribution of heavy metals and polycyclic aromatic hydrocarbons in holm oak plant–soil system evaluated along urbanization gradients. Chemosphere 134:91–97

    Article  CAS  Google Scholar 

  • De Nicola F, Claudia L, Vittoria PM, Giulia M, Anna A (2011) Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmos Environ 45:1428–1433

    Article  CAS  Google Scholar 

  • Domingos M, Bulbovas P, Camargo CZS, Silva CA, Brandao SE, Martinelli MD, Dias APL, Engel MRGS, Gagliano J, Moura BB, Alves ES, Rinaldi MCS, Gomes EPC, Furlan CM, Figueiredo AMG (2015) Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Environ Pollut 202:85–95

    Article  CAS  Google Scholar 

  • Dubrovskaya EV, Polikarpova IO, Muratova AY, Pozdnyakova NN, Chernyshova MP, Turkovskaya OV (2014) Changes in physiological, biochemical, and growth parameters of sorghum in the presence of phenanthrene. Russ J Plant Physiol 61(4):529–536

    Article  CAS  Google Scholar 

  • Dupuy J, Ouvrard S, Leglize P, Sterckeman T (2015) Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene. Chemosphere 124:110–115

    Article  CAS  Google Scholar 

  • Huang S, Dai C, Zhou Y, Peng H, Yi K, Qin P, Luo S, Zhang X (2018) Comparisons of three plant species in accumulating polycyclic aromatic hydrocarbons (PAHs) from the atmosphere: a review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2167-z

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Hwang HM, Wade TL (2008) Aerial distribution, temperature-dependent seasonal variation, and sources of polycyclic aromatic hydrocarbons in pine needles from the Houston metropolitan area, Texas, USA. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1243–1251

    Article  CAS  Google Scholar 

  • Inam E, Ibanga F, Essien J (2016) Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria. Environ Monit Assess 188:681. https://doi.org/10.1007/s10661-016-5695-3

    Article  CAS  Google Scholar 

  • Jan FA, Khan S, Ishaq M, Naeem M, Ahmad I, Hussain S (2013) Brick kiln exhaust as a source of polycyclic aromatic hydrocarbons (PAHs) in the surrounding soil and plants: a case study from the city of Peshawar. Pakistan. Arab J Geosci 7:13–19. https://doi.org/10.1007/s12517-013-0901-x

    Article  CAS  Google Scholar 

  • Krajian H, Odeh A (2013) Polycyclic aromatic hydrocarbons in medicinal plants from Syria. Toxicol Environ Chem 95(6):942–953

    Article  CAS  Google Scholar 

  • Kreslavski VD, Brestic M, Zharmukhamedov SK, Lyubimov VY, Lankin AV, Jajoo A, Allakhverdiev SI (2017) Mechanisms of inhibitory effects of polycyclic aromatic hydrocarbons in photosynthetic primary processes in pea leaves and thylakoid preparations. Plant Biol 19:683–688

    Article  CAS  Google Scholar 

  • Kreslavski VD, Lankin AV, Vasilyeva GK, Luybimov VY, Semenova GN, Schmitt FJ, Friedrich T, Allakhverdiev SI (2014) Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. Plant Physiol Biochem 81:135–142

    Article  CAS  Google Scholar 

  • Lemos SDC, Rebello TJJ, Pinto JLQ, Albarello MMN (2016) In vitro germination and post-seminal development of Ruta graveolens L. under the influence of phenanthrene and benzo[a]pyrene. Rev Cienc Agron 47(4):737–743

    Google Scholar 

  • Leonard RJ, McArthur C, Hochuli DF (2016) Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For Urban Greening 20:249–253

    Article  Google Scholar 

  • Li J, Shanga X, Zhaoa Z, Tanguaya RL, Donga Q, Huanga C (2010) Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. J Hazard Mater 173:75–81

    Article  CAS  Google Scholar 

  • Liu H, Weisman D, Ye YB, Cui B, Huang Y, Carmona AC, Wang Z (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • Mandal V, Tandey R (2016) A critical analysis of publication trends from 2005–2015 in microwave assisted extraction of botanicals: how far we have come and the road ahead. Trends Anal Chem 82:100–108

    Article  CAS  Google Scholar 

  • Naidoo G, Naidoo K (2016) Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza. Mar Pollut Bull 113:193–199

    Article  CAS  Google Scholar 

  • Naidoo G, Naidoo K (2017) Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. FLORA 235:1–9

    Article  Google Scholar 

  • Nasir Al F, Batarseh MI (2008) Agricultural reuse of reclaimed water and uptake of organic compounds: pilot study at Mutah University wastewater treatment plant, Jordan. Chemosphere 72:1203–1214

    Article  CAS  Google Scholar 

  • Prajapati SK, Tripathi BD (2008) Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves. Environ Pollut 151:543–548

    Article  CAS  Google Scholar 

  • Petrova S, Rezek J, Soudek P, Vaněk T (2017) Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Sci Total Environ 599(600):572–580

    Article  CAS  Google Scholar 

  • Ratola N, Amigo JM, Alves A (2010) Comprehensive assessment of pine needles as bioindicators of PAHs using multivariate analysis. The importance of temporal trends. Chemosphere 81:1517–1525

    Article  CAS  Google Scholar 

  • Rey-Salgueiro L, Martinez-Carballo E, Garcia-Falcon MS, Simal-Gandara J (2008) Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chem 108:347–353

    Article  CAS  Google Scholar 

  • Sharma AP, Tripathi BD (2009) Assessment of atmospheric PAHs profile through Calotropis gigantea R.Br. leaves in the vicinity of an Indian coal-fired power plant. Environ Monit Assess 49:477–482

    Article  CAS  Google Scholar 

  • Soceanu A, Dobrinas S, Stanciu G, Popescu V (2014) Polycyclic aromatic hydrocarbons in vegetables grown in urban and rural areas. Environ Eng Manag J 13(9):2311–2315

    Article  CAS  Google Scholar 

  • Sojinua OS, Sonibareb OO, Ekundayob O, Zengc EY (2010) Biomonitoring potentials of polycyclic aromatic hydrocarbons (PAHs) by higher plants from an oil exploration site, Nigeria. J Hazard Mater 184:759–764

    Article  CAS  Google Scholar 

  • Song H, Wang Y-S, Sun C-C, Wang Y-T, Peng Y-L, Cheng H (2012) Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza. Ecotoxicology 21:1625–1632

    Article  CAS  Google Scholar 

  • Sun H, Guo S, Nan Y, Ma R (2018) Direct determination of surfactant effects on the uptake of gaseous parent and alkylated PAHs by crop leaf surfaces. Ecotoxicol Environ Saf 154:206–213

    Article  CAS  Google Scholar 

  • Terzaghi E, Zacchello G, Scacchi M, Raspa G, Jones KC, Cerabolini B, Di Guardo A (2015) Towards more ecologically realistic scenarios of plant uptake modeling for chemicals: PAHs in a small forest. Sci Total Environ 505:329–337

    Article  CAS  Google Scholar 

  • Tian X, Zhou G, Peng P (2008) Concentrations and influence factors of polycyclic aromatic hydrocarbons in leaves of dominant species in the Pearl River Delta, South China. Huan Jing Ke Xue 29(4):849–854

    Google Scholar 

  • Tomar RS, Sharma A, Jajoo A (2014) Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. Plant Biol (Stuttg) 17(4):870–876

    Article  CAS  Google Scholar 

  • Tomar RS, Jajoo A (2013) Alteration in PS II heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). Plant Sci 209:58–63

    Article  CAS  Google Scholar 

  • Tomar RS, Jajoo A (2015) Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat. Ecotoxicol Environ Saf 122:31–36

    Article  CAS  Google Scholar 

  • Wang Z, Liu Z, Yang Y, Li T, Liu M (2012) Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland, Shanghai, China. Chemosphere 89:221–227

    Article  CAS  Google Scholar 

  • Wei H, Song S, Tian H, Liu T (2014) Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. C R Biol 337:95–100

    Article  Google Scholar 

  • Xi D, Li J, Kuang YW, Xu YM, Zhu XM (2013) Influence of traffic exhausts on elements and polycyclic aromatic hydrocarbons in leaves of medicinal plant Broussonetia papyrifera. Atmos Pollut Res. 4:370–376

    Article  CAS  Google Scholar 

  • Yantun S, Rong H, Shaolin P, Hongfu W (2013) Polycyclic aromatic hydrocarbons in different soils and vegetables from the Pearl River Delta, South China. Environ Eng Manag J 12(10):1891–1895

    Article  Google Scholar 

  • Zezulka S, Kummerova M, Babula P, Vanova L (2013) Lemna minor exposed to fluoranthene: growth, biochemical, physiological and histochemical changes. Aquat Toxicol 140 (141):37–47

    Article  CAS  Google Scholar 

  • Zhang Y, Hou D, Xiong G, Duan Y, Cai C, Wang X, Li J, Tao S, Liu W (2018) Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environ Pollut 239:13–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Infrastructural support from home University is duly acknowledged. Collaboration from Chhattisgarh Council of Science & Technology is greatly appreciated.

Funding

This study was funded by SERB, New Delhi (India) under the scheme Empowerment and Equity Opportunities for Excellence in Science (Project File Number: EEQ/2016/000067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivekananda Mandal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, V., Chouhan, K.B.S., Tandey, R. et al. Critical analysis and mapping of research trends and impact assessment of polyaromatic hydrocarbon accumulation in leaves: let history tell the future. Environ Sci Pollut Res 25, 22464–22474 (2018). https://doi.org/10.1007/s11356-018-2578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2578-x

Keywords

Navigation