Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 26, pp 26279–26296 | Cite as

Stable carbon and nitrogen isotopic composition of PM10 over Indo-Gangetic Plains (IGP), adjoining regions and Indo-Himalayan Range (IHR) during a winter 2014 campaign

  • Avirup Sen
  • Supriya G. Karapurkar
  • Mohit Saxena
  • Damodar M. Shenoy
  • Abhijit Chaterjee
  • Anil K. Choudhuri
  • Trupti Das
  • Altaf H. Khan
  • Jagdish Chandra Kuniyal
  • Srimata Pal
  • Dharam Pal Singh
  • Sudhir Kumar Sharma
  • Ravindra Kumar Kotnala
  • Tuhin Kumar Mandal
Research Article
  • 72 Downloads

Abstract

For source identification, a field campaign involving simultaneous sampling of particulate matter (PM10) was conducted at eight sampling sites in the Indian mainland during winter 2014. The sampling sites include Delhi (upper IGP), Lucknow (middle IGP), and Kolkata (lower IGP) in the Indo-Gangetic Plains (IGP); Mohal-Kullu and Darjeeling in the Indo-Himalayan Range (IHR). In addition, Ajmer, located upwind of the IGP in NW-India and Giridih and Bhubaneswar, in the downwind to the IGP has also been chosen. To characterize the sources of the ambient PM10, stable isotope ratios of carbon (δ13CTC) and nitrogen (δ15NTN) for the total carbon (TC) and total nitrogen (TN) fractions have been considered. Ancillary chemical parameters, such as organic carbon (OC), elemental carbon (EC), and water-soluble ionic components (WSIC) mass concentrations are also presented in this paper. There was very small variation in the daily average δ13CTC ratios (− 24.8 to − 25.9‰) among the sites. Comparison with end-member stable C isotopic signatures of major typical sources suggests that the PM10 at the sites was mainly from fossil fuel and biofuel and biomass combustion. Daily average δ15NTN ratios were not observed to vary much between sites either (8.3 to 11.0‰), and the low δ15NTN levels also indicate substantial contributions from biofuel and biomass burning of primarily C3 andC4 plant matter.

Graphical abstract

Scatter plot of the average (± 1 standard deviation (SD)) δ13CTC (‰) compared to δ15NTN (‰) at the sampling sites.

Keywords

IGP PM10 Stable isotopes Carbonaceous aerosols Biomass burning 

Notes

Acknowledgments

The authors (TKM, SKS, MS) would like to thank the Director, CSIR-NPL, New Delhi, for his constant support and encouragement. The author (AS) would like to thank Mrs. Pratirupa Bardhan for the technical and scientific help rendered during the preparation of this manuscript. AS is also grateful to HRDG, CSIR for providing the SPM-SRF fellowship. AC acknowledges Prof Sibaji Raha for all the support in carrying out the observations at Kolkata and Darjeeling and the technical support of Mr. Vivek Gurung and Mr. Sabyasachi Majee at Darjeeling and Miss Debolina Seal at Kolkata. The author (AKK) is grateful to the Director, IITR, Lucknow for his encouragement and support. The author (JCK) would like to thank the Director, GBPNIHESD, Kosi-Katarmal, Almora (UK). Analyses and visualizations used in this paper were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC.

Funding information

The authors (AKC and SP) are indebted to the Director, Indian Statistical Institute and HRDG, CSIR for their encouragement and financial support for this study at Giridih. The author (TD) takes the oppertunity to acknowledge to the Director, CSIR-IMMT and the Head, Environment, and Sustainability Department of CSIR-IMMT for their encouragement and financial support.

Supplementary material

11356_2018_2567_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1640 kb)

References

  1. Aggarwal SG, Kawamura K, Umarji GS, Tachibana E, Patil RS, Gupta PK (2013) Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing. Atmos Chem Phys 13(9):4667–4680CrossRefGoogle Scholar
  2. Agnihotri R, Mandal TK, Karapurkar SG, Naja M, Gadi R, Ahammmed YN, Kumar A, Saud T, Saxena M (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45(17):2828–2835CrossRefGoogle Scholar
  3. Agnihotri R, Karapurkar SG, Sarma VV, Yadav K, Kumar MD, Sharma C, Prasad MVSN (2015) Stable isotopic and chemical characteristics of bulk aerosols during winter and summer season at a station in Western Coast of India (Goa). Aerosol Air Qual Res 15(3):888–900CrossRefGoogle Scholar
  4. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15(4):955–966CrossRefGoogle Scholar
  5. Aneja VP, Schlesinger WH, Knighton R, Jennings G, Niyogi D, Gillam W, Duke C (2006) Proceedings of the workshop on agricultural air quality: state of the science. Potomac, MD, North Carolina State University, ReleighGoogle Scholar
  6. Badarinath KVS, Chand TRK, Prasad VK (2006) Agriculture crop residue burning in the Indo-Gangetic plains – A study using IRS P6 AWiFS satellite. Curr Sci India 91:1085–1089Google Scholar
  7. Bikkina S, Kawamura K, Sarin M (2016a) Stable carbon and nitrogen isotopic composition of fine mode aerosols (PM 2.5) over the Bay of Bengal: impact of continental sources. Tellus B 68Google Scholar
  8. Bikkina S, Andersson A, Sarin MM, Sheesley RJ, Kirillova E, Rengarajan R, Sudheer AK, Ram K, Gustafsson Ö (2016b) Dual carbon isotope characterization of total organic carbon in wintertime carbonaceous aerosols from northern India. J Geophys Res Atmos 121:4797–4809.  https://doi.org/10.1002/2016JD024880
  9. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles 21, GB2018.  https://doi.org/10.1029/2006GB002840
  10. Bosch C, Andersson A, Kirillova EN, Budhavant K, Tiwari S, Praveen PS, Russell LM, Beres ND, Ramanathan V, Gustafsson Ö (2014) Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the south Asian outflow intercepted over the Indian Ocean. J Geophys Res Atmos 119(20):11,743–11,759CrossRefGoogle Scholar
  11. Cachier H, Buat-Menard P, Fontugne M, Chesselet R (1986) Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies. Tellus B 38(3–4):161–177Google Scholar
  12. Chatterjee A, Dutta C, Jana TK, Sen S (2012) Fine mode aerosol chemistry over a tropical urban atmosphere: characterization of ionic and carbonaceous species. J Atmos Chem 69:83–100CrossRefGoogle Scholar
  13. Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmüller H, Fung K (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38(16):4414–4422CrossRefGoogle Scholar
  14. Datta A, Sharma SK, Harit RC, Kumar V, Mandal TK, Pathak H (2012) Ammonia emission from subtropical cropland area in India. Asia-Pac J Atmos Sci 48(3):275–281CrossRefGoogle Scholar
  15. Draxler RR, Rolph GD (2003) HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring
  16. Fisseha R, Saurer M, Jäggi M, Siegwolf RT, Dommen J, Szidat S, Samburova V, Baltensperger U (2009) Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes. Atmos Environ 43(2):431–437CrossRefGoogle Scholar
  17. Fu PQ, Kawamura K, Chen J, Li J, Sun YL, Liu Y, Tachibana E, Aggarwal SG, Okuzawa K, Tanimoto H, Kanaya Y (2012) Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmos Chem Phys 12(18):8359–8375CrossRefGoogle Scholar
  18. Fung K, Chow JC, Watson JG (2002) Evaluation of OC/EC speciation by thermal manganese dioxide oxidation and the IMPROVE method. J Air Waste Manage Assoc 52(11):1333–1341CrossRefGoogle Scholar
  19. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  20. Gensch I, Kiendler-Scharr A, Rudolph J (2014) Isotope ratio studies of atmospheric organic compounds: principles, methods, applications and potential. Int J Mass Spectrom 365–366:206–221CrossRefGoogle Scholar
  21. Gupta AK, Patil RS, Gupta SK (2003) A long-term study of oxides of nitrogen, sulphur dioxide, and ammonia for a port and harbor region in India. J Environ Sci Health A 38(12):2877–2894CrossRefGoogle Scholar
  22. Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engström E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913):495–498CrossRefGoogle Scholar
  23. Guttikunda SK, Jawahar P (2014) Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos Environ 92:449–460CrossRefGoogle Scholar
  24. Hegde P, Kawamura K, Joshi H, Naja M (2015) Organic and inorganic components of aerosols over the central Himalayas: Winter and summer variations in stable carbon and nitrogen isotopic composition. Environ Sci Pollut Res 1–17.  https://doi.org/10.1007/s11356-015-5530-3
  25. Hegde P, Kawamura K, Joshi H, Naja M (2016) Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition. Environ Sci Pollut Res 23(7):6102–6118CrossRefGoogle Scholar
  26. Jain S, Sharma SK, Mandal TK, Shenoy DM, Bardhan P, Srivastava MK, Chatterjee A, Saxena M (2016) Seasonal variations of stable carbon and nitrogen isotopic composition of PM10 at urban sites of Indo-Gangetic Plains (IGP) of India IASTA. Bulletin 22:597–601Google Scholar
  27. Jung J, Kawamura K (2011) Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles. Atmos Chem Phys 11(21):10911–10928CrossRefGoogle Scholar
  28. Keene WC, Pszenny AA, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res Atmos 91(D6):6647–6658CrossRefGoogle Scholar
  29. Kelly SD, Stein C, Jickells TD (2005) Carbon and nitrogen isotopic analysis of atmospheric organic matter. Atmos Environ 39(32):6007–6011CrossRefGoogle Scholar
  30. Khare P, Baruah BP (2012) Elemental characterization and source identification of PM 2.5 using multivariate analysis at the suburban site of North-East India. Atmos Res 98(1):148–162Google Scholar
  31. Kim TW, Lee K, Duce R, Liss P (2014) Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophys Res Lett 41:3156–3162CrossRefGoogle Scholar
  32. Kirillova EN, Andersson A, Sheesley RJ, Kruså M, Praveen PS, Budhavant K, Safai PD, Rao PSP, Gustafsson Ö (2013) 13C-and 14C-based study of sources and atmospheric processing of water-soluble organic carbon (WSOC) in South Asian aerosols. J Geophys Res Atmos 118(2):614–626CrossRefGoogle Scholar
  33. Kumar R, Naja M, Satheesh SK, Ojha N, Joshi H, Sarangi T, Pant P, Dumka UC, Hegde P, Venkataramani S (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res Atmos 116(D19)Google Scholar
  34. Kundu S, Kawamura K, Andreae TW, Hoffer A, Andreae MO (2010a) Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. J Aerosol Sci 41(1):118–133CrossRefGoogle Scholar
  35. Kundu S, Kawamura K, Lee M (2010b) Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: implications for atmospheric processing and source changes of aerosols. J Geophys Res Atmos 115(D20)Google Scholar
  36. Kuniyal JC (2010) Aerosols climatology over the north-western Indian Himalayan region ARFI & ICARB scientific progress report ISRO-GBP, India 93–99Google Scholar
  37. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10(22):11017–11096CrossRefGoogle Scholar
  38. Lelieveld JO, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Ottmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HJ, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506):1031–1036CrossRefGoogle Scholar
  39. Li J, Wang G, Zhou B, Cheng C, Cao J, Shen Z, An Z (2011) Chemical composition and size distribution of wintertime aerosols in the atmosphere of Mt. Hua in central China. Atmos Environ 45:1251–1258CrossRefGoogle Scholar
  40. Martinelli LA, Camargo PB, Lara LBLS, Victoria RL, Artaxo P (2002) Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmos Environ 36(14):2427–2432CrossRefGoogle Scholar
  41. Mittal ML, Sharma C, Singh R (2012) Estimates of emissions from coal fired thermal power plants in India, International Emission Inventory Conference, Tampa, Florida—August 13–16Google Scholar
  42. Miyazaki Y, Kawamura K, Jung J, Furutani H, Uematsu M (2011) Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmos Chem Phys 11(7):3037–3049CrossRefGoogle Scholar
  43. Miyazaki Y, Fu PQ, Kawamura K, Mizoguchi Y, Yamanoi K (2012) Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos Chem Phys 12:1367–1376CrossRefGoogle Scholar
  44. Mkoma SL, Kawamura K, Tachibana E, Fu P (2014) Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C3 and C4 plants to organic aerosols Tellus B 66Google Scholar
  45. Nair VS, Moorthy KK, Alappattu DP, Kunhikrishnan PK, George S, Nair PR, Babu SS, Abish B, Satheesh SK, Tripathi SN, Niranjan K, Madhavan BL, Srikant V, Dutt CBS, Badarinath KVS, Reddy RR (2007) Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. J Geophys Res 112, D13205.  https://doi.org/10.1029/2006JD008099
  46. Narukawa M, Kawamura K, Li SM, Bottenheim JW (2008) Stable carbon isotopic ratios and ionic composition of the high-Arctic aerosols: an increase in δ13C values from winter to spring. J Geophys Res Atmos 113(D2)Google Scholar
  47. Panda S, Sharma SK, Mahapatra PS, Panda U, Rath S, Mahapatra M, Das T (2016) Organic and elemental carbon variation in PM25 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat Hazards 80(3):1709–1728CrossRefGoogle Scholar
  48. Pavuluri CM, Kawamura K (2012) Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. Geophys Res Lett 39, L03802.  https://doi.org/10.1029/2011GL050398
  49. Pavuluri CM, Kawamura K, Tachibana E, Swaminathan T (2010) Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: implication for the origins of aerosol nitrogen in south and Southeast Asia. Atmos Environ 44(29):3597–3604CrossRefGoogle Scholar
  50. Pavuluri CM, Kawamura K, Swaminathan T, Tachibana E (2011) Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: implications for sources and photochemical processing of organic aerosols. J Geophys Res Atmos 116(D18)Google Scholar
  51. Pavuluri CM, Kawamura K, Fu PQ (2015) Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmos Chem Phys 15(17):9883–9896CrossRefGoogle Scholar
  52. Rajput P, Sarin MM, Rengarajan R, Singh D (2011) Atmospheric polycyclic aromatic hydrocarbons (PAHs) from post-harvest biomass burning emissions in the Indo-Gangetic Plain: isomer ratios and temporal trends. Atmos Environ 45(37):6732–6740CrossRefGoogle Scholar
  53. Rajput P, Sarin M, Sharma D, Singh D 2014 Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B 66Google Scholar
  54. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41(1):88–98CrossRefGoogle Scholar
  55. Ram K, Sarin MM, Tripathi SN (2010) A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources, and temporal variability. J Geophys Res 115:D24313CrossRefGoogle Scholar
  56. Ramanathan V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448(7153):575–578CrossRefGoogle Scholar
  57. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307CrossRefGoogle Scholar
  58. Roy D, Gautam S, Singh P, Singh G, Das PK, Patra AK (2016) Carbonaceous species and physicochemical characteristics of PM10 in coal mine fire area—a case study. Air Qual Atmos Health 9:429.  https://doi.org/10.1007/s11869-015-0355-2 CrossRefGoogle Scholar
  59. Sahai S, Sharma C, Singh DP, Dixit CK, Singh N, Sharma P, Singh K, Bhatt S, Ghude S, Gupta V, Gupta RK, Tiwari MK, Garg SC, Mitra AP, Gupta PK (2007) A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmos Environ 41:9173–9186CrossRefGoogle Scholar
  60. Saarikoski S, Timonen H, Saarnio K, Aurela M, Järvi L, Keronen P, Kerminen V-M, and Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295.  https://doi.org/10.5194/acp-8-6281-2008
  61. Sarkar C, Chatterjee A, Singh AK, Ghosh SK, Raha S (2015) Characterization of black carbon aerosols over Darjeeling—a high altitude Himalayan Station in Eastern India. Aerosol Air Qual Res 15:465–478.  https://doi.org/10.4209/aaqr2014020028 CrossRefGoogle Scholar
  62. Saud T, Mandal TK, Gadi R, Singh DP, Sharma SK, Saxena M, Mukherjee A (2011) Emission estimates of particulate matter (PM) and trace gases (SO2, NO, and NO2) from biomass fuels used in rural sector of Indo-Gangetic Plain, India. Atmos Environ 45:5913–5923CrossRefGoogle Scholar
  63. Saud T, Gautam R, Mandal TK, Gadi R, Singh DP, Sharma SK, Dahiya M, Saxena M (2012) Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic-Plain (IGP), India. Atmos Environ 61:212–220CrossRefGoogle Scholar
  64. Saud T, Saxena M, Singh DP, Sarwswati, Dhaiya M, Sharma SK, Datta A, Gadi R, Mandal TK (2013) Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos Environ 71:158–169Google Scholar
  65. Saxena M, Sharma SK, Tomar N, Ghayas H, Sen A, Garhwal RS, Gupta NC, Mandal TK (2016) Residential biomass burning emissions over northwestern Himalayan region of India: chemical characterization and budget estimation. Aerosol Air Qual Res 16:504–518CrossRefGoogle Scholar
  66. Saxena M, Sharma A, Sen A, Saxena P, Mandal TK, Sharma SK, Sharma C (2017) Water soluble inorganic species of PM10 and PM25 at an urban site of Delhi, India: seasonal variability and sources. Atmos Res 184:112–125CrossRefGoogle Scholar
  67. Sen A, Ahammed YN, Arya BC, Banerjee T, Begam GR, Baruah BP, Chatterjee A, Choudhuri AK, Dhir A, Das T, Dhyani PP, Deb NC, Gadi R, Gauns M, Ghosh SK, Gupta A, Sharma KC, Khan AH, Kumari KM, Kumar M, Kumar A, Kuniyal JC, Lakhani A, Meena RK, Mahapatra PS, Naqvi SWA, Singh DP, Pal S, Panda S, Rohtash SJ, Saikia P, Sharma A, Sharma P, Saxena M, Shenoy DM, Vachaspati CV, Sharma SK, Mandal TK (2014a) Atmospheric fine and coarse mode aerosols at different environments of India and the Bay of Bengal during winter-2014: implications of a coordinated campaign. MAPAN 29(4):273–284CrossRefGoogle Scholar
  68. Sen A, Mandal TK, Sharma SK, Saxena M, Gupta NC, Gautam R, Gupta A, Gill T, Rani S, Saud T, Singh DP (2014b) Chemical properties of emission from biomass fuels used in the rural sector of the western region of India. Atmos Environ 99:411–424CrossRefGoogle Scholar
  69. Sen A, Ahammed YN, Banerjee T, Chatterjee A, Choudhuri AK, Das T, Deb NC, Dhir A, Goel S, Khan AH, Mandal TK (2016) Spatial variability in ambient atmospheric fine and coarse mode aerosols over Indo-Gangetic plains, India and adjoining oceans during the onset of summer monsoons, 2014. Atmos Pollut Res 7(3):521–532Google Scholar
  70. Sen A, Abdelmaksoud AS, Ahammed YN, Alghamdi MA, Banerjee T, Bhat MA, Chatterjee A, Choudhari AK, Das T, Dhir A, Gadi R, Ghosh S, Khan AH, Khoder M, Kumari KM, Kuniyal JC, Kumar M, Lakhani A, Mahapatra PS, Naja M, Singh DP, Pal S, Rafiq M, Romshoo SA, Rashid I, Saikia P, Shenoy DM, Sridhar V, Verma N, Vyas BM, Saxena M, Sharma A, Sharma SK, Mandal TK (2017) Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmos Environ 154:200–224.  https://doi.org/10.1016/jatmosenv201612054 CrossRefGoogle Scholar
  71. Sharma SK, Datta A, Saud T, Saxena M, Mandal TK, Ahammed YN, Arya BC (2010) Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J Environ Sci 22(7):1023–1028CrossRefGoogle Scholar
  72. Sharma SK, Mandal TK, Saxena M, Rohtash, Sharma A, Gautam R (2014) Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Clim 10:656–670Google Scholar
  73. Sharma SK, Mandal TK, Shenoy DM, Bardhan P, Srivastava MK, Chatterjee A, Saxena M, Singh BP, Ghosh SK (2015) Variation of stable carbon and nitrogen isotopic composition of PM10 at urban sites of Indo Gangetic Plain (IGP) of India. Bull Environ Contam Toxicol 95(5):661–669CrossRefGoogle Scholar
  74. Sharma SK, Mandal TK, Srivastava MK, Chatterjee A, Jain S, Saxena M, Singh BP, Saraswati, Sharma A, Adak A, Ghosh SK (2016) Spatio-temporal chemical characteristics of aerosol over Indo Gangetic Plain of India. Environ Sci Pollut Res 23(18):18809–18822CrossRefGoogle Scholar
  75. Sharma SK, Agarwal P, Mandal TK, Karapurkar SG, Shenoy DM, Peshin SK, Gupta A, Saxena M, Jain S, Sharma A, Saraswati (2017a) Study on ambient air quality of megacity Delhi, India during odd-even strategy. MAPAN 32(2):155–165CrossRefGoogle Scholar
  76. Sharma SK, Mandal TK, De AK, Deb NC, Jain S, Saxena M, Pal S, Choudhari AK, Saraswati (2017b) Carbonaceous and inorganic species in PM10 during wintertime over Giridih, Jharkhand (India). J Atmos Chem.  https://doi.org/10.1007/s10874-017-9373-9
  77. Singh S, Tiwari S, Gond DP, Dumka UC, Bisht DS, Tiwari S, Pandithurai G, Sinha A (2015) Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmos Res 161–162:25–35CrossRefGoogle Scholar
  78. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47(3):380–384CrossRefGoogle Scholar
  79. Srinivas B, Sarin MM (2013) Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: Impact of biomass burning emissions. Environ Res Lett 8(4):044042Google Scholar
  80. Srinivas B, Sarin MM (2014) PM2.5, EC and OC in atmospheric outflow from the Indo-Gangetic plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci Total Environ 487:196–205CrossRefGoogle Scholar
  81. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96(12):2059–2077.  https://doi.org/10.1175/BAMS-D-14-001101 CrossRefGoogle Scholar
  82. Sun Y, Zhuang G, Huang K, Li J, Wang Q, Wang Y, Lin Y, Fu JS, Zhang W, Tang A, Zhao X (2010) Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004. J Geophys Res Atmos 115(D7)Google Scholar
  83. Turekian VC, Macko S, Ballentine D, Swap RJ, Garstang M (1998) Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies. Chem Geol 152(1):181–192CrossRefGoogle Scholar
  84. Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307(5714):1454–1456CrossRefGoogle Scholar
  85. Vyas BM (2010) Studies of regional features of atmospheric aerosol, total carbonaceous aerosols and their role in the atmospheric radiative forcing effect over the tropical semi-arid location ie Udaipur, western region part of India ARFI & ICARB Scientific Progress Report ISRO-GBP, India, pp 67–70Google Scholar
  86. Wang S, Nan J, Shi C, Fu Q, Gao S, Wang D, Cui H, Saiz-Lopez A, Zhou B (2015) Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci Rep 5Google Scholar
  87. Widory D (2006) Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust Theor Model 10(5):831–841CrossRefGoogle Scholar
  88. Widory D (2007) Nitrogen isotopes: tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos Environ 41(11):2382–2390CrossRefGoogle Scholar
  89. Widory D, Roy S, Le Moullec Y, Goupil G, Cocherie A, Guerrot C (2004) The origin of atmospheric particles in Paris: a view through carbon and lead isotopes. Atmos Environ 38(7):953–961CrossRefGoogle Scholar
  90. Yeatman SG, Spokes LJ, Dennis PF, Jickells TD (2001a) Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites. Atmos Environ 35:1307–1320CrossRefGoogle Scholar
  91. Yeatman SG, Spokes LJ, Dennis PF, Jickells TD (2001b) Can the study of nitrogen isotopic composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanisms? Atmos Environ 35:1337–1345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Avirup Sen
    • 1
  • Supriya G. Karapurkar
    • 2
  • Mohit Saxena
    • 1
  • Damodar M. Shenoy
    • 2
  • Abhijit Chaterjee
    • 3
  • Anil K. Choudhuri
    • 4
  • Trupti Das
    • 5
  • Altaf H. Khan
    • 6
  • Jagdish Chandra Kuniyal
    • 7
  • Srimata Pal
    • 8
  • Dharam Pal Singh
    • 9
  • Sudhir Kumar Sharma
    • 1
  • Ravindra Kumar Kotnala
    • 1
  • Tuhin Kumar Mandal
    • 1
  1. 1.Environmental Sciences and Biomedical Metrology DivisionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.CSIR-National Institute of OceanographyDona PaulaIndia
  3. 3.Centre for Astroparticle Physics and Space SciencesBose InstituteKolkataIndia
  4. 4.Indian Statistical InstituteGiridihIndia
  5. 5.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  6. 6.CSIR-Indian Institute of Toxicology ResearchLucknowIndia
  7. 7.G.B. Pant National Institute of Himalayan Environment and Sustainable DevelopmentKulluIndia
  8. 8.Indian Statistical InstituteKolkataIndia
  9. 9.Central University of RajasthanAjmerIndia

Personalised recommendations