Advertisement

Metals in fish of different trophic levels in the area of influence of the AHE Foz do Chapecó reservoir, Brazil

  • Sérgio Augusto Beirith Campos
  • Jacir Dal-Magro
  • Gilza Maria de Souza-Franco
Research Article
  • 49 Downloads

Abstract

In regions where there is intense polluting activity, a greater availability of metals in water impounded by dams increases the availability and contamination of the fauna and flora. Thus, we assessed the accumulation of metals in muscle and gills of fish of different trophic levels in the area of influence of Foz do Chapecó hydroelectric plant on the Uruguai river. We analyzed the metals Pb, Cd, Cu, Cr, Mn, Zn, and Fe in Hypostomus isbrueckeri (cascudo), Pimelodus maculatus (mandi), and Salminus brasiliensis (dourado). We collected specimens from both upstream and downstream of the reservoir in February and March 2014. We also measured the allometric condition factor of the fish to determine their physiological status. Physical and chemical variables of the water were measured to determine the influence of these abiotic variables on the bioavailability of metals and on the condition factor of the fish. Gills had a higher concentration of metals than muscle. Hypostomus isbrueckeri and Pimelodus maculatus possessed high concentrations of metals, indicating greater bioaccumulation in benthic species. Only chromium in muscle varied significantly between upstream and downstream, with higher concentrations in H. isbrueckeri and P. maculatus upstream. Chromium contamination, however, did not change the condition factor, which did not vary between upstream and downstream for any of the studied species. We found no influence of abiotic variables of the water on the bioavailability of the metals in the environment. Although the data do not indicate trophic magnification, the different species react differently to environmental changes and their trophic plasticity makes it difficult to assign them to specific guilds.

Keywords

Hypostomus isbrueckeri Pimelodus maculatus Salminus brasiliensis Bioindicators Bioaccumulation Uruguai river 

Notes

Acknowledgements

The authors thank Capes for a scholarship to the first author, and Unochapecó, Instituto Goio En for logistic support.

Supplementary material

11356_2018_2522_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1691 kb)

References

  1. Abelha MCF, Agostinho AA, Goulart E (2008) Plasticidade trófica em peixes de água doce. Acta Sci Biol Sci (23) 425–434Google Scholar
  2. Abilhoa V et al (2016) Use of food resources and resource partitioning among five syntopic species of Hypostomus (Teleostei: Loricariidae) in an Atlantic Forest river in southern Brazil. Zoologia (Curitiba) 33(6):1–7CrossRefGoogle Scholar
  3. Agostinho AA, Gomes LC, Pelicice FM (2007) Perspectivas para a pesca e os recursos pesqueiros em reservatórios. In: Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Brasil. Eduem, Maringá, pp 403–453Google Scholar
  4. Alves RI, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155CrossRefGoogle Scholar
  5. Azevedo JS, Hortellani MA, Sarkis JES (2012) Accumulation and distribution of metals in the tissues of two catfish species from Cananéia and Santos-São Vicente estuaries. Braz J Oceanogr 60:463–472CrossRefGoogle Scholar
  6. Baird C (2001) Química Ambiental. Reverté, n 2:556Google Scholar
  7. Bennemann ST, Galves W, Capra LG (2011) Recursos alimentares utilizados pelos peixes e estrutura trófica de quatro trechos no reservatório Capivara (Rio Paranapanema). Biota Neotropica 11(1):63–71CrossRefGoogle Scholar
  8. Bere T, Dalu T, Mwedzi T (2016) Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams. Sci Total Environ 572:147–156CrossRefGoogle Scholar
  9. Bonai NC, Souza-Franco GM, Fogolari O, Mocelin DJC, Dal Magro J (2009) Distribution of metals in the sediment of the Itá reservoir, Brazil. Acta Limnol Bras 21(2):245–250Google Scholar
  10. Bou-Olayan A et al (1995) Accumulation of lead, cadmium, copper and nickel by pearl oyster, Pinctada radiata, from Kuwait marine environment. Mar Pollut Bull 30(3):211–214CrossRefGoogle Scholar
  11. Braga FMS (1986) Estudo entre fator de condição e relação peso-comprimento para alguns peixes marinhos. Braz J Biol 46:339–346Google Scholar
  12. Brasil (2006) Instituto do Meio Ambiente e dos Recursos Naturais Renováveis. C122 Caderno da Região Hidrográfica do Uruguai. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Brasília: MMAGoogle Scholar
  13. Brazil, Leis et al (1965) Decreto n° 55.871 de 26 de março de 1965. Diário Oficial da União, Brasília, seção 1(1): 3611Google Scholar
  14. Brazil, Leis et al. (1998) Divisão Nacional de Vigilância Sanitária de alimentos DINAL–Portaria n° 685 de 27 de agosto de 1998. Diário Oficial da União. Brasília 1: 1415–1437Google Scholar
  15. Burger J, Gaines KF, Boring CS, Stephens WL, Snodgrass J, Dixon C (2002) Metal levels in fish from the Savannah River: potential hazards to fish and other receptors. Environ Res 89:85–97CrossRefGoogle Scholar
  16. Caetano ICS, Martins LA, Merlini LS (2011). Análise da qualidade da água e dos peixes do lago Aratimbó, Umuarama Pr-Brasil. Arq. Ciências Saúde UNIPAR 2(15)Google Scholar
  17. Camara EM, Caramaschi EP, Petry AC (2011) Fator de condição: bases conceituais, aplicações e perspectivas de uso em Pesquisas ecológicas com peixes. Oecologia Australis 2(15):249–274CrossRefGoogle Scholar
  18. Castro MP et al (2014) Acute aerocystitis in Nile tilapia bred in net cages and supplemented with chromium carbochelate and Saccharomyces cerevisiae. Fish & Shellfish Immunology 36(1):284–290Google Scholar
  19. Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardore G, Di Geronimo SI, Punturo R, Ottonello D (2006) Heavy metals in coastal water systems. A case study from the northwestern gulf of Thailand. Chemosphere 7(64):1167–1176CrossRefGoogle Scholar
  20. De Mérona B, De Morais L T (1997) Les études ichtyologiques liées à la construction du barrage de Petit-Saut: un premier bilan et des recommandations. Hydroécologie Appliquée (9) 241–262Google Scholar
  21. Eneji IS, Sha’ato R, Annune PA (2011) Bioaccumulation of heavy metals in fish (Tilapia Zilli and Clarias Gariepinus) organs from river Benue, north—central Nigeria. Pak J Anal Environ Chem 2(12):25–31Google Scholar
  22. Esteves KE, Pinto Lôbo AV (2001) Feeding pattern of Salminus maxillosus (Pisces, Characidae) at Cachoeira das Emas, Mogi-Guaçu River (São Paulo state, Southeast Brazil). Rev Bras Biol 61(2):267–276CrossRefGoogle Scholar
  23. Farombi EO, Adelowo OA, Ajimoko YR (2007) Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. Int J Environ Res Public Health 2(4):158–165CrossRefGoogle Scholar
  24. Francalanza FP (2007) Concentrações de mercúrio em peixes de diferentes níveis tróficos na bacia do rio Paraíba do Sul. Rio de Janeiro: Universidade Federal Rural do Rio de Janeiro 46 p. Dissertação de Mestrado em Recursos Ambientais e FlorestaisGoogle Scholar
  25. Franklin RL, Ferreira FJ, Bevilacqua JE, Fávaro DI (2012) Assessment of metals and trace elements in sediments from Rio Grande reservoir, Brazil, by neutron activation analysis. J Radioanal Nucl Chem 291(1):147–153CrossRefGoogle Scholar
  26. Fu J, Zhao C, Luo Y, Liu C, Kyzas GZ, Luo Y, Zhu H (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109CrossRefGoogle Scholar
  27. Gomes ID, Araújo FG, do Nascimento AA, Sales A (2015) Equilibrium reproductive strategy of the amored catfish Hypostomus auroguttatus (Siluriformes, Loricariidae) in a tropical river in southeastern Brazil. Environ Biol Fish 98:249–260CrossRefGoogle Scholar
  28. Guimarães JRD, Fostier AH, Forti MC, Melfi JA, Kehrig H, Mauro JBN, Malm O, Krug JF (1999) Mercury in human and environmental samples from two lakes in Amapá, Brasilian Amazon. Ambio 4(28):296–301Google Scholar
  29. Heath AG (1995) Ventilation changes in response to pollutants. In: water pollution and fish physiology. CRC press, ed 2, pp 52–55Google Scholar
  30. Hédouin L, Metian M, Teyssié JL, Fowler SW, Fichez R, Warnau M (2006) Allometric relationships in the bioconcentration of heavy metals by the edible tropical clam Gafrarium tumidum. Sci Total Environ 366(1):154–163CrossRefGoogle Scholar
  31. Jaric I, Visnjic-Jeftic Z, Cvijanovic G, Gacic Z, Jovanovic L, Skoric S, Lenhardt M (2011) Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchem J 98:77–81CrossRefGoogle Scholar
  32. Joyeux JC, Campanha-Filho EC, Jesus HC (2004) Trace metal contamination in estuarine fishes from Vitória Bay, ES, Brazil. Braz Arch Biol Technol (47) n 5, pp. 765–774Google Scholar
  33. Kehring HA, Malm O, Pallermo EF, Seixas TG, Baêta AP, Moreira I (2011) Bioconcentração e biomagnificação de metilmercúrio na baía de Guranabara. Química Nova (34) 377–384Google Scholar
  34. Kiekens L (1983) Behavior of heavy metals in soils. In: Berglund S, Davis RD, L’Hermite P (eds) Utilization of sewage sludge on land: rates of application and longterm effects of metals. D. Reidel Publishing, DordrechtGoogle Scholar
  35. Lima-Junior SE, Goitein R (2004) Diet and feeding activity of Pimelodus maculatus (Osteichthyes, Pimelodidae) in the Piracicaba River (state of São Paulo, Brazil)—the effect of seasonality. Bol Inst Pesca 30(2):135–140Google Scholar
  36. Lima-Junior SE, Cardone IB, Goitein R (2002) Determination of a method for calculation of Allometric Condition Factor of fish. Acta Scientiarum 24:397–400Google Scholar
  37. Lobon-Cerviá J, Bennemann S (2000) Temporal trophic shifts and feeding diversity in two sympatric, Neotropical, omnivorous fishes: Astyanax bimaculatus and Pimelodus maculatus in Rio Tibagi (Parana, southern Brazil). Arch Hydrobiol 149:285–306CrossRefGoogle Scholar
  38. Lolis AA, Andrian IF (1996) Alimentação de Pimelodus maculatus Lacepede, 1803 (Siluriformes, Pimelodidae) na planície de inundação do Alto Rio Paraná, Brasil. Bol Inst Pesca 23:187–202Google Scholar
  39. Maia BP, Ribeiro SMF, Bizzotto PM, Vono V, Godinho HP (2007) Reproductive activity and recruitment of the yellow-mandi Pimelodus maculatus (Teleostei: Pimelodidae) in the Igarapava reservoir, Grande River, Southeast Brazil. Neotrop Ichthyol 5(2):147–152CrossRefGoogle Scholar
  40. Martinelli LA, Krusche AV, Victoria RL, Camargo PB, Bernardes M, Ferraz ES, Moraes JM, Ballester MV (1999) Effects of sewage on the chemical composition of Piracicaba river, Brazil. Water. Air Soil Pollut 2(110):67–79CrossRefGoogle Scholar
  41. Milesi SV, Biasi C, Restello RM, Hepp LU (2008) Efeito de metais Cobre (Cu) e Zinco (Zn) sobre a comunidade de macroinvertebrados bentônicos em riachos do sul do Brasil. Acta Sci Biol Sci 30(3):283–289Google Scholar
  42. MMA - MINISTÉRIO DO MEIO AMBIENTE (2006) Caderno da Região Hidrográfica do Uruguai. MMA, Secretaria de Recursos Hídricos, BrasíliaGoogle Scholar
  43. Nwani CD, Nwachi DA, Okogwu OI, Ude EF, Odoh GE (2010) Heavy metals in fish species from lotic freshwater ecosystem at Afikpo, Nigeria. J Environ Biol 31(5):595–601Google Scholar
  44. Olurin KB, Aderibigbe OA (2006) Length-weight relationship and condition factor of pond reared juvenile Oreochromis niloticus. World J Zool 1(2):82–85Google Scholar
  45. Pereira P, Pablo H, Pacheco M, Vale C (2010) The relevance of temporal and organ specific factors on metals accumulation and biochemical effects in feral fish (Liza aurata) under a moderate contamination scenario. Ecotoxicol Environ Saf (73) 805–816Google Scholar
  46. Pitta Virga RH, Geraldo LP, Santos FH (2007) Avaliação de contaminação por metais pesados em amostras de siris azuis. Cienc Tecnol Aliment 27(4):779–785CrossRefGoogle Scholar
  47. Rambo CL, Zanotelli P, Dalegrave D, De Nez D, Szczepanik J, Carazek F, Franscescon F, Rosemberg DB, Siebel AM, Dal Magro J (2017) Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model. Environ Sci Pollut Res 24:8759–8768.  https://doi.org/10.1007/s11356-017-8509-4 CrossRefGoogle Scholar
  48. Reynalte-Tataje DA, Nuñer APO, Nunes MC, Garcia V, Lopes CA, Zaniboni-Filho E (2012) Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil. Neotrop Ichthyol 10(4):829–835CrossRefGoogle Scholar
  49. Rocha MA, Ribeiro ELA, Mizubuti IY (1997) Comparação entre os fatores de condição de Fulton e alométrico em curimbatá (Prochilodus lineatus) criados em dois ambientes. Arch Latinoam Anim 1(5):459–460Google Scholar
  50. Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer-Verlag, New York, p 349CrossRefGoogle Scholar
  51. Schork G, Zaniboni-Filho E (2017) Structure dynamics of a fish community over ten years of formation in the reservoir of the hydroelectric power plant in upper Uruguay River. Braz J Biol 77(4):710–723CrossRefGoogle Scholar
  52. Serrão CRG (2013) Pescado como bioindicador da exposição a elementos metálicos: Determinação de Cr, Zn e Fe em músculo e brânquias de peixes da microbacia do Rio Piraíba–Distrito de Icoaraci. Belém ParáGoogle Scholar
  53. Sivaperumal P, Sankar TV, Nair PV (2007) Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem 102(3):612–620CrossRefGoogle Scholar
  54. Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol Environ Saf (72) 1957–1965Google Scholar
  55. Souza VL, Lima VL, Hazin CA, Fonseca CK, Santos SO (2015) Biodisponibilidade de metais-traço em sedimentos: uma revisão. Braz J of Rad Scien 3(1A):1–13Google Scholar
  56. Souza-Franco, GM, Renk, AA, Dal Magro, J, Dal Magro, MLP, Bertollo, V (2011). Fishing and sustainability in the upper Uruguay river hydrographic basin. In: Bilibio, C, Hensel, O, Selbach, J (org.). Sustainable water management in the tropics and subtropics - and case studies in Brazil. 1 ed. Jaguarão/RS: Fundação Universidade federal do pampa, Unikassel, PGCult/UFMA, 2011, v. 1, p. 819–860Google Scholar
  57. Staniskiene B, Matusevicius P, Budreckiene R, Skibniewska KA (2006) Distribution of heavy metals in tissues of freshwater fish in Lithuania. Pol J Environ Stud 4(15):585–591Google Scholar
  58. Ternus RZ, Souza-Franco GM, Anselmini MEK, Mocellin DJC, Dal Magro J (2011) Influence of urbanisation on water quality in the basin of the upper Uruguay River in western Santa Catarina, Brazil. Acta Limnol Bras 23(2):189–199CrossRefGoogle Scholar
  59. Villares-Junior GA, Cardone IB, Goitein R (2016) Comparative feeding ecology of four syntopic Hypostomus species in a Brazilian southeastern river. Braz J Biol 76(3):692–699CrossRefGoogle Scholar
  60. Weber P, Behr ER, Knorr CDL, Vendruscolo DS, Flores EM, Dressler VL, Baldisserotto B (2013) Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J 106:61–66CrossRefGoogle Scholar
  61. Zaniboni-Filho E (2004) Piscicultura das espécies nativas de água doce. In: POLI CR et al (eds) Aqüicultura: experiências brasileiras. Multitarefa Editora, Florianópolis, pp 337–369Google Scholar
  62. Zhang M, Cui L, Sheng L, Wang Y (2009) Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu wetland of northern China. Ecol Eng 35(4):563–569CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Naturais e ExatasUniversidade Comunitária da Região de Chapecó, Avenida Senador Atílio FontanaChapecóBrazil
  2. 2.Universidade Federal da Fronteira Sul (UFFS)RealezaBrazil

Personalised recommendations