Environmental Science and Pollution Research

, Volume 25, Issue 24, pp 23712–23724 | Cite as

Nontuberculous mycobacteria in the environment of Hranice Abyss, the world’s deepest flooded cave (Hranice karst, Czech Republic)

  • Ivo Pavlik
  • Milan Gersl
  • Milan Bartos
  • Vit Ulmann
  • Petra Kaucka
  • Jan Caha
  • Adrian Unc
  • Dana Hubelova
  • Ondrej Konecny
  • Helena ModraEmail author
Research Article


Nontuberculous mycobacteria (NTM) are widely distributed in the environment. On one hand, they are opportunistic pathogens for humans and animals, and on the other hand, they are effective in biodegradation of some persistent pollutants. Following the recently recorded large abundance of NTM in extreme geothermal environments, the aim of the study was to ascertain the occurrence of NTM in the extreme environment of the water zone of the Hranice Abyss (HA). The HA mineral water is acidic, with large concentrations of free CO2, and bacterial slimes creating characteristic mucilaginous formations. Both culture and molecular methods were used to compare the mycobacterial diversity across the linked but distinct ecosystems of HA and the adjacent Zbrašov Aragonite Caves (ZAC) with consideration of their pathogenic relevance. Six slowly growing NTM species (M. arupense, M. avium, M. florentinum, M. gordonae, M. intracellulare) and two rapidly growing NTM species (M. mucogenicum, M. sediminis) were identified in the water and in the dry zones at both sites. Proteobacteria were dominant in all the samples from both the HA and the ZAC. The bacterial microbiomes of the HA mineral water and HA slime were similar, but both differed from the microbiome in the ZAC mineral water. Actinobacteria, a phylum containing mycobacteria, was identified in all the samples at low proportional abundance. The majority of the detected NTM species belong among environmental opportunistic pathogens.


Cave bacterial slimes Epidemiology Geomycobacteriology Environmental saprophytic mycobacteria Inorganic carbon 



This work was supported by the Czech Science Foundation (No. 16-13231S). The authors are indebted to Michal Guba, Jan Musil, and Martin Prachar (speleodivers, Czech Speleological Society 7-02 Hranicky Kras, Czech Republic) for underwater sample collection and to Barbora Simeckova (Cave Administration of the Czech Republic, Zbrašov Aragonite Caves, Hranice na Morave, Czech Republic) for her assistance during the sample collection. The authors also thank Vratislav Ouhrabka for creating the geological map of the HA and the ZAC.

Supplementary material

11356_2018_2450_MOESM1_ESM.docx (17 kb)
Table S1 (DOCX 16 kb)
11356_2018_2450_MOESM2_ESM.docx (15 kb)
Table S2 (DOCX 14 kb)
11356_2018_2450_MOESM3_ESM.docx (13 kb)
Table S3 (DOCX 13 kb)
11356_2018_2450_MOESM4_ESM.docx (13 kb)
Table S4 (DOCX 12 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Band JD, Ward JI, Fraser DW, Peterson NJ, Silcox VA, Good RC, Ostroy PR, Kennedy J (1982) Peritonitis due to a Mycobacterium chelonei-like organism associated with intermittent chronic peritoneal dialysis. J Infect Dis 145:9–17CrossRefGoogle Scholar
  3. Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL (2007) The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104CrossRefGoogle Scholar
  4. Bernardet J-F (2015) Flavobacteriales ord. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc., in association with Bergey’s Manual Trust. p 1–2.
  5. Bland CS, Ireland JM, Lozano E, Alvarez ME, Primm TP (2005) Mycobacterial ecology of the Rio Grande. Appl Environ Microbiol 71:5719–5727CrossRefGoogle Scholar
  6. Bomberg M, Lamminmäki T, Itävaara M (2016) Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland. Biogeosciences 13:6031–6047CrossRefGoogle Scholar
  7. Brooks RW, Parker BC, Gruft H, Falkinham JO III (1984) Epidemiology of infection by non-tuberculous mycobacteria. V. Numbers in eastern United States soils and correlation with soil characteristics. Am Rev Respir Dis 130:630–633Google Scholar
  8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  9. Caroli G, Levre’ E, Armani G, Biffi-Gentili S, Molinari G (1985) Search for acid-fast bacilli in bottled mineral waters. J Appl Bacteriol 58:461–464CrossRefGoogle Scholar
  10. Chan ED, Iseman MD (2009) Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend Med 7:5–18CrossRefGoogle Scholar
  11. Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederwis M (2009) Physiology of mycobacteria. Adv Microb Physiol 55:81–319CrossRefGoogle Scholar
  12. De Mandal S, Panda AK, Lalnunmawii E, Bisht SS Kumar NS (2015a) Illumina-based analysis of bacterial community in Khuangcherapuk Cave of Mizoram, Northeast India. Genom Data 5:13–14. CrossRefGoogle Scholar
  13. De Mandal S, Sanga Z, Kumar NS (2015b) Metagenome sequencing reveals Rhodococcus dominance in Farpuk Cave, Mizoram, India, an Eastern Himalayan biodiversity hot spot region. Genome Announc 3:e00610-15. CrossRefGoogle Scholar
  14. De Mandal S, Zothansanga PAK, Bisht SS, Kumar NS (2015c) First report of bacterial community from a bat guano using Illumina next-generation sequencing. Genom Data 4:99–101. CrossRefGoogle Scholar
  15. De Mandal S, Chatterjee R, Kumar NS (2017) Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. BMC Microbiol 17:90. CrossRefGoogle Scholar
  16. Dimov I, Gonzalez E (1986) Sources of cattle infection with atypical mycobacteria and the frequency of their isolation from healthy slaughter animals in Cienfuegos Province, Cuba. Vet Med Nauki 23:47–52Google Scholar
  17. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Res 5.
  18. Engbaek HC, Vergmann B, Weis Bentzon B (1967) The sodium lauryl sulphate method in culturing sputum for mycobacteria. Scand J Respir Dis 48:268–284Google Scholar
  19. Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798CrossRefGoogle Scholar
  20. Falkinham JO III (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367CrossRefGoogle Scholar
  21. Falkinham JO III (2016) Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr Environ Health Rep 3:161–167CrossRefGoogle Scholar
  22. Fleming EJ, Cetinic I, Chan CS, King DW, Emerson D (2014) Ecological succession among iron-oxidizing bacteria. ISME J 8:804–815CrossRefGoogle Scholar
  23. Gersl M (2009) Hranice Karst. In: Hromas J (ed) Caves CR, Protected natural area CR, vol 15. Czech Republic, Agentura Ochrany Prirody a Krajiny CR & EkoCentrum Brno, pp 365–367 (in Czech)Google Scholar
  24. Gersl M (2016) Discrimination of the Hranice karst waters (Czech Republic) based on the archival data. Geoscience Research Reports 49:247–252. CrossRefGoogle Scholar
  25. Gersl M, Hladil J, Hypr D, Stepisnik U (2004) Variability of carbon dioxide concentrations in Zbrašov Aragonite Caves and its assessment on the base of nine-year monitoring research. In Gersl M (ed) proceedings of the 3rd National Speleological Congress, Czech speleological. Society:15–19Google Scholar
  26. Gersl M, Kosina M, Sedlacek I, Novakova D, Travenec F (2007) Biodiversity of culturable prokaryotes from the Hranice Abyss and the role of microorganisms in carbonate speleothemes forming. Geol Výzk Mor Slez v r 2006. Brno 14:86–91Google Scholar
  27. Ghaemi E, Ghazisaidi K, Koohsari H, Khodabakhshi B, Mansoorian A (2006) Environmental mycobacteria in areas of high and low tuberculosis prevalence in the Islamic Republic of Iran. East Mediterr Health J 12:280–285Google Scholar
  28. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron
  29. Hennessee CT, Li QX (2016) Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four Mycobacterium species. Appl Environ Microbiol 82:3357–3369CrossRefGoogle Scholar
  30. Ichiyama S, Shimokata K, Tsukamura M (1988) The isolation of Mycobacterium avium complex from soil, water, and dust. Microbiol Immunol 32:733–739CrossRefGoogle Scholar
  31. Iino T (2014) The family Ignavibacteriaceae. In: Rosenberg E, EF DL, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Other major lineages of bacteria and the Archaea, 4th edn. Springer, Berlin, pp 701–703Google Scholar
  32. Iivanainen EK, Martikainen PJ, Väänänen PK, Katila M-L (1993) Environmental factors affecting the occurrence of mycobacteria in brook waters. Appl Environ Microbiol 59:398–404Google Scholar
  33. Iivanainen EK, Martikainen PJ, Räisänen ML, Katila M-L (1997) Mycobacteria in boreal coniferous forest soils. FEMS Microbiol Ecol 23:325–332CrossRefGoogle Scholar
  34. Iivanainen EK, Martikainen PJ, Väänänen PK, Katila M-L (1999) Environmental factors affecting the occurrence of mycobacteria in brook sediments. Appl Environ Microbiol 86:673–681CrossRefGoogle Scholar
  35. Ikner LA, Toomey RS, Nolan G, Neilson JW, Pryor BM, Maier RM (2007) Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb Ecol 53:30–42CrossRefGoogle Scholar
  36. Jetten MS, den Camp HJO, Gijs Kuenen J, Strous M (2015) “Candidatus Brocadiales” ord. nov, In Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc., in association with Bergey’s Manual Trust. p 1.
  37. Jones RT (2015) A comprehensive survey of soil Rhizobiales diversity using high-throughput DNA sequencing. In: de Bruijn FJ (ed) Biological Nitrogen Fixation. John Wiley & Sons Inc, Hoboken, pp 769–776CrossRefGoogle Scholar
  38. Juni E, Bøvre K (2015) Moraxella. In Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Inc., in association with Bergey's Manual p 1–17. doi:
  39. Kato S, Krepski S, Chan C, Itoh T, Ohkuma M (2014) Ferriphaselus amnicola gen. nov., sp. nov., a neutrophilic, stalk-forming, iron-oxidizing bacterium isolated from an iron-rich groundwater seep. Int J Syst Evol Microbiol 64:921–925CrossRefGoogle Scholar
  40. Kazda J (2000) The ecology of mycobacteria. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  41. Kazda J, Pavlik I, Falkinham JO, Hruska K (2009) The ecology of mycobacteria: impact on Animal’s and Human’s health. Springer, New YorkCrossRefGoogle Scholar
  42. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. CrossRefGoogle Scholar
  43. Kirschner RA Jr, Parker BC, Falkinham JO III (1992) Epidemiology of infection by nontuberculous mycobacteria Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am Rev Respir Dis 145:271–275CrossRefGoogle Scholar
  44. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e11. CrossRefGoogle Scholar
  45. Kušar D, Zajc U, Jenčič V, Ocepek M, Higgins J, Žolnir-Dovč M, Pate M (2017) Mycobacteria in aquarium fish: results of a 3-year survey indicate caution required in handling pet-shop fish. J Fish Dis 40:773–784CrossRefGoogle Scholar
  46. Leclerc MC, Thomas F, Guegan JF (2003) Evidence for phylogenetic inheritance in pathogenicity of Mycobacterium. Anton Leeuw Int J G 83:265–274CrossRefGoogle Scholar
  47. Lewis AH, Falkinham JO III (2015) Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol 4:25–30CrossRefGoogle Scholar
  48. Liu T, Liu S, Zheng M, Chen Q, Ni J (2016) Performance assessment of full-scale wastewater treatment plants based on seasonal variability of microbial communities via high-throughput sequencing. PLoS One 11:e0152998. CrossRefGoogle Scholar
  49. Lukins HB, Foster JW (1963) Utilization of hydrocarbons and hydrogen by mycobacteria. Z Allg Mikrobiol 3:251–264CrossRefGoogle Scholar
  50. McInerney MJ, Stams AJM, Boone DR (2015) Syntrophobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc., in association with Bergey's Manual Trust. p 1–10.
  51. Meyberg M, Rinne B (1995) Messung des 3He/4He-Isotopenverhältnisses im Hranicka Propast (Tschechische Republik). Die Höhle Zeitschrift für Karst und Höhlenkunde 46:5–8Google Scholar
  52. Modra H, Bartos M, Hribova P, Ulmann V, Hubelova D, Konecny O, Gersl M, Kudelka J, Voros D, Pavlik I (2017) Detection of mycobacteria in the environment of the Moravian Karst (Bull Rock Cave and the relevant water catchment area): the impact of water sediment, earthworm castings and bat guano. Vet Med-Czech 62:153–168CrossRefGoogle Scholar
  53. Muangchinda C, Yamazoe A, Polrit D, Thoetkiattikul H, Mhuantong W, Champreda V, Pinyakong O (2017) Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment: a microcosm study and bacterial community analysis. Environ Sci Pollut Res 24:4591–4602CrossRefGoogle Scholar
  54. Mukai T, Miyamoto Y, Yamazaki T, Makino M (2006) Identification of Mycobacterium species by comparative analysis of the dnaA gene. FEMS Microbiol Lett 254:232–239CrossRefGoogle Scholar
  55. Musil J (2017) The Hranice Abyss became the deepest underwater abyss in the world! In: Bosak P, Gersl M, Novotna J (eds) Speleoforum vol. 36. Proceedings from Meeting of cavers in the Moravian Karst. Czech Speleological Society, Sloup, pp 10–15Google Scholar
  56. National Center for Biotechnology Information (NCBI) BLAST Analysis. Accessed July 27, 2016
  57. Nelson MB, Berlemont R, Martiny AC, Martiny JBH (2015) Nitrogen cycling potential of a grassland litter microbial community. Appl Environ Microbiol 81:7012–7022CrossRefGoogle Scholar
  58. Neumann M, Schulze-Robbecke R, Hagenau C, Behringer K (1997) Comparison of methods for isolation of Mycobacteria from water. Appl Environ Microbiol 63:547–552Google Scholar
  59. Palleroni NJ (2015) Burkholderia. In: Bergey's manual of systematics of archaea and Bacteria. Wiley, pp 1–50.
  60. Park SS, DeCicco BT (1976) Hydrogenase and ribulose diphosphate carboxylase during autotrophic, heterotrophic, and mixotrophic growth of scotochromogenic mycobacteria. J Bacteriol 127:731–738Google Scholar
  61. Paul S, Cortez Y, Vera N, Villen GK, Gutiérrez-Correa M (2016) Metagenomic analysis of microbial communities in the soil-mousse surrounding of an Amazonian geothermal spring in Peru. Br Biotechnol J 15:27519. CrossRefGoogle Scholar
  62. Pontiroli A, Kheira TT, Oakley BB, Mason S, Dowd SE, Travis ER, Erenso G, Aseffa A, Courtenay O, Wellington EMH (2013) Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity. PLoS One 8:e68648. CrossRefGoogle Scholar
  63. Revetta RP, Gomez-Alvarez V, Gerke TL, Santo Domingo JW, Ashbolt NJ (2016) Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system. J Appl Microbiol 121:294–305CrossRefGoogle Scholar
  64. Shabarova T, Pernthaler J (2010) Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types. Environ Microbiol 12:1061–1074CrossRefGoogle Scholar
  65. Shabarova T, Villiger F, Pernthale RJ (2013) Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environ Microbiol 15:2476–2488CrossRefGoogle Scholar
  66. Shabarova T, Villiger J, Morenkov O, Niggemann J, Dittmar T, Pernthaler J (2014) Bacterial community structure and dissolved organic matter in repeatedly flooded subsurface karst water pools. FEMS Microbiol Ecol 89:111–126CrossRefGoogle Scholar
  67. Simeckova B (2013) Experience from floods in 2010. In: Simeckova B, Gersl M (eds) Zbrašov Aragonite Caves, Acta Speleologica, vol 4, pp 141–145 (in Czech)Google Scholar
  68. Slany M, Svobodova J, Ettlova A, Slana I, Mrlik V, Pavlik I (2010) Mycobacterium arupense among the isolates of non-tuberculous mycobacteria from human, animal and environmental samples. Vet Med-Czech 55:369–376CrossRefGoogle Scholar
  69. Springer B, Böttger EC, Kirschner P, Wallace RJ Jr (1995) Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of the 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int J Syst Evol Microbiol 45:262–267Google Scholar
  70. Stout JE, Koh W-J, Yew WW (2016) Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis 45:123–134Google Scholar
  71. Telenti A, Marchesi F, Balz M, Bally F, Böttger EC, Bodmer T (1993) Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31:175–178Google Scholar
  72. Totani T, Nishiuchi Y, Tateishi Y, Yoshida Y, Kitanaka H, Niki M, Kaneko Y, Matsumoto S (2017) Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci Rep 7:41775. CrossRefGoogle Scholar
  73. Vigneron A, Bishop A, Alsop EB, Hull K, Rhodes I, Hendricks R, Head IM, Tsesmetzis N (2017) Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania region. Front Microbiol 8:593. CrossRefGoogle Scholar
  74. Vysoka H (2017) Hydrogeological research of the Hranice Abbys within the project of Neuron Expedition—preliminary results. In: Bosak P, Gersl M, Novotna J (eds) Speleoforum, vol. 36. Proceedings from Meeting of cavers in the Moravian Karst. Czech Speleological Society, Sloup, pp 16–21Google Scholar
  75. Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014CrossRefGoogle Scholar
  76. Willems A (2014) The family Comamonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria, 4th edn. Springer, Berlin, pp 777–851CrossRefGoogle Scholar
  77. Wolinsky E (1975) Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis 119:107–159Google Scholar
  78. Zhang DF, Chen X, Zhang XM, Zhi XY, Yao JC, Jiang Y, Xiong Z, Li WJ (2013) Mycobacterium sediminis sp. nov. and Mycobacterium arabiense sp. nov., two rapidly growing members of the genus Mycobacterium. Int J Syst Evol Microbiol 63:4081–4086CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Regional Development and International StudiesMendel University in BrnoBrnoCzech Republic
  2. 2.Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
  3. 3.Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Public Health Institute OstravaOstravaCzech Republic
  5. 5.Faculty of PharmacyUniversity of Veterinary and Pharmaceutical Sciences BrnoBrnoCzech Republic
  6. 6.School of Science and the EnvironmentMemorial University of NewfoundlandCorner BrookCanada

Personalised recommendations