Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22944–22962 | Cite as

Responses of phytoplankton community to eutrophication in Semerak Lagoon (Malaysia)

  • Huey Hui Er
  • Li Keat Lee
  • Zhen Fei Lim
  • Sing Tung Teng
  • Chui Pin Leaw
  • Po Teen Lim
Research Article


Effects of aquaculture activities on the environmental parameters and phytoplankton community structure were investigated in a semi-enclosed lagoon located at Semerak River, Malaysia. Elevated concentrations of phosphate and ammonia were observed at the aquaculture area and the inner lagoon. Relatively low dissolved oxygen, high total chlorophyll a, and high phytoplankton abundances but low species richness were recorded. Chaetoceros, Pseudo-nitzschia brasiliana, Blixaea quinquecornis, and Skeletonema blooms were observed, and some were associated with anoxia condition. Eutrophication level assessed by UNTRIX suggests that the water quality in the lagoon is deteriorating. Dissolved inorganic phosphorus and nitrogen at the impacted area were 15 and 12 times higher than the reference sites, respectively. Such trophic status indices could provide a useful guideline for optimal aquaculture management plan to reduce the environmental impact caused by aquaculture.


Algal blooms Diatoms Dinoflagellates Eutrophication Phytoplankton UNTRIX 



This work was funded by the Malaysian government through the Ministry of Higher Education HICoE fund [IOES-2014C] to PT Lim. The authors are grateful to NANO-POGO for providing seed fund to support the initial part of the project, and we acknowledged the contribution from JSPS Core-to-Core Program. HH Er was supported by the Ministry of Education Mybrain Scholarship, and this work formed part of her MSc research.

Supplementary material

11356_2018_2389_MOESM1_ESM.pdf (801 kb)
ESM 1 (PDF 801 kb)
11356_2018_2389_MOESM2_ESM.docx (16 kb)
Table S1 (DOCX 16 kb)
11356_2018_2389_MOESM3_ESM.docx (15 kb)
Table S2 (DOCX 14 kb)
11356_2018_2389_MOESM4_ESM.docx (18 kb)
Table S3 (DOCX 18 kb)


  1. Acuña P, Vila I, Marín V (2008) Short-term responses of phytoplankton to nutrient enrichment and planktivorous fish predation in a temperate South American mesotrophic reservoir. Hydrobiologia 600:131–138CrossRefGoogle Scholar
  2. Aké-Castillo JA, Vázquez G (2011) Peridinium quinquecorne var. trispiniferum var. nov.(Dinophyceae) de un ambiente salobre. Acta Bot Mex:125–140Google Scholar
  3. Alabastar J (1982) Report of the EIFAC workshop on fish-farm effluents. EIFAC Tech Pap 41:166Google Scholar
  4. Alkawri A, Al Areeki M, Alsharaby K (2016) The first recorded bloom of Protoperidinium quinquecorne and its link to a massive fish kill in Yemeni coastal waters, Southern Red Sea. Plankton Benthos Res 11:75–78CrossRefGoogle Scholar
  5. Alongi D, Chong V, Dixon P, Sasekumar A, Tirendi F (2003) The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of Peninsular Malaysia. Mar Environ Res 55:313–333CrossRefGoogle Scholar
  6. Alongi DM, McKinnon AD, Brinkman R, Trott LA, Undu MC (2009) The fate of organic matter derived from small-scale fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 295:60–75CrossRefGoogle Scholar
  7. Andersen JH, Conley DJ, Hedal S (2004) Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Mar Pollut Bull 49:283290CrossRefGoogle Scholar
  8. Anderson DM, Andersen P, Bricelj VM, Cullen JJ, Rensel JJ (2001) Monitoring and management strategies for harmful algal blooms in coastal waters. Asia Pacific Economic Program, Singapore, and Intergovernmental Oceanographic Commission, Paris 268 ppGoogle Scholar
  9. Anderson CR, Sapiano MR, Prasad MBK, Long W, Tango PJ, Brown CW, Murtugudde R (2010) Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay. J Mar Syst 83:127–140CrossRefGoogle Scholar
  10. Anderson DM, Alpermann TJ, Cembella AD, Collos Y, Masseret E, Montresor M (2012a) The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10–35CrossRefGoogle Scholar
  11. Anderson DM, Cembella AD, Hallegraeff GM (2012b) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176CrossRefGoogle Scholar
  12. Azanza RV, Fukuyo Y, Yap LG, Takayama H (2005) Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, northern Philippines. Harmful Algae 4:519–524CrossRefGoogle Scholar
  13. Backer L, Fleming L, Rowan A, Baden D (2003) Epidemiology, public health and human diseases associated with harmful marine algae. UNESCO Publishing, Paris, pp 725–750Google Scholar
  14. Bartozek E, Bueno N, Rodrigues L (2014) Influence of fish farming in net cages on phytoplankton structure: a case study in a subtropical Brazilian reservoir. Braz J Biol 74:145–155CrossRefGoogle Scholar
  15. Bates S, Trainer V (2006) The ecology of harmful diatoms. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 81–88CrossRefGoogle Scholar
  16. Bell GR (1961) Penetration of spines from a marine diatom into the gill tissue of lingcod (Ophiodon elongatus). Nature 192:279–280CrossRefGoogle Scholar
  17. Bell G, Grifficen W, Kennedy O (1974) Mortalities of pen-reared salmon associated with blooms of marine algae. Proceedings of the Northwest Fish Culture Conference 25th Anniversary, Dec. 4–6, 1974. Seattle, WA, pp 58–60Google Scholar
  18. Boyd C, Lichtkoppler F (1979) Research and development of international center for aquaculture. Agric Exp Station (Series 22), pp 3–10Google Scholar
  19. Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8:21–32CrossRefGoogle Scholar
  20. Buschmann AH, Riquelme VA, Hernández-González MC, Varela D, Jiménez JE, Henríquez LA, Vergara PA, Guíñez R, Filún L (2006) A review of the impacts of salmonid farming on marine coastal ecosystems in the Southeast Pacific. ICES J Mar Sci: J Conseil 63:1338–1345CrossRefGoogle Scholar
  21. Buyukates Y, Roelke D (2005) Influence of pulsed inflows and nutrient loading on zooplankton and phytoplankton community structure and biomass in microcosm experiments using estuarine assemblages. Hydrobiologia 548:233–249CrossRefGoogle Scholar
  22. Celekli A, Külköylüoğlu O (2007) On the relationship between ecology and phytoplankton composition in a karstic spring (Cepni, Bolu). Ecol Indic 7:497–503CrossRefGoogle Scholar
  23. Claereboudt M, Hermosa G, McLean E (2001) Plausible cause of massive fish kill in the Gulf of Oman. Proceeding of the first international conference on Fisheries, Aquaculture and Environments in the Northwest Indian Ocean (Muscat, Oman), pp 123–132Google Scholar
  24. Cloern JE (1991) Tidal stirring and phytoplankton bloom dynamics in an estuary. J Mar Res 49:203–221CrossRefGoogle Scholar
  25. Coelho S, Gamito S, Pérez-Ruzafa A (2007) Trophic state of Foz de Almargem coastal lagoon (Algarve, South Portugal) based on the water quality and the phytoplankton community. Estuar Coast Shelf Sci 71:218–231CrossRefGoogle Scholar
  26. Crossetti L, Bicudo D, Bicudo C, Bini L (2008) Phytoplankton biodiversity changes in a shallow tropical reservoir during the hypertrophication process. Braz J Biol 68:1061–1067CrossRefGoogle Scholar
  27. Dalsgaard T, Krause-Jensen D (2006) Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture 256:302–310CrossRefGoogle Scholar
  28. David C, Maria YS, Siringan F, Reotita J, Zamora P, Villanoy C, Sombrito E, Azanza R (2009) Coastal pollution due to increasing nutrient flux in aquaculture sites. Environ Geol 58:447–454CrossRefGoogle Scholar
  29. Davies O, Ugwumba O (2013) Tidal influence on nutrients status and phytoplankton population of Okpoka Creek, Upper Bonny Estuary, Nigeria. J Mar Biol 2013:1–16CrossRefGoogle Scholar
  30. Dawes CJ (1998) Marine botany. John Wiley & Sons, Inc., New York, p 480Google Scholar
  31. de Jonge VN, Elliott M, Orive E (2002) Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia 475:1–19CrossRefGoogle Scholar
  32. Department of Environment Malaysia (2018) Malaysia marine water quality criteria and standard, Department of Environment, Ministry of Natural Resources & Environment. Accessed on 24 Apr 2018
  33. Dias JB, Huszar VL (2011) O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis 15:799–834CrossRefGoogle Scholar
  34. Diaz MM, Temporetti PF, Pedrozo FL (2001) Response of phytoplankton to enrichment from cage fish farm waste in Alicura Reservoir (Patagonia, Argentina). Lakes Reserv Res Manag 6:151–158CrossRefGoogle Scholar
  35. Dittmar T, Lara R (2001) Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in North Brazil. Estuar Coast Shelf Sci 52:249–259CrossRefGoogle Scholar
  36. Dortch Q, Robichaux R, Pool S, Milsted D, Mire G, Rabalais N, Soniat T, Fryxell G, Turner R, Parsons ML (1997) Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico. Mar Ecol Prog Ser 146:249264CrossRefGoogle Scholar
  37. Dortch Q, Parsons M, Doucette G, Fryxell G, Maier A, Thessen A, Powell C, Soniat T (2000) Pseudo-nitzschia spp. in the northern Gulf of Mexico: overview and response to increasing eutrophication, The Symposium on Harmful Algae in the U. S., Woods Hole, Massachusetts, December 5–9. p 2000Google Scholar
  38. Draisci R, Ferretti E, Palleschi L, Marchiafava C, Poletti R, Milandri A, Ceredi A, Pompei M (1999) High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 37:1187–1193CrossRefGoogle Scholar
  39. Escobar MTL, Sotto LPA, Jacinto GS, Benico GA, Azanza RV (2013) Eutrophic conditions during the 2010 fish kill in Bolinao and Anda, Pangasinan. J Environ Sci Manag 1:29–35Google Scholar
  40. Figueredo CC, Giani A (2005) Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshw Biol 50:1391–1403CrossRefGoogle Scholar
  41. Fisheries Research Institute (2007) Annual report of fisheries research institute, Department of Fisheries. Ministry of Agriculture Malaysia PublishingGoogle Scholar
  42. Fukuyo Y, Takano H, Chihara M, Matsuoka K (1990) Red tide organisms in Japan: an illustrated taxonomic guide. Uchida Rokakuho Co., Ltd., Tokyo 407 ppGoogle Scholar
  43. Gao Y, Yin K, He L, Harrison PJ (2012) Phytoplankton growth on organic nutrients from trash fish. Aquat Ecosyst Health Manag 15:234–240CrossRefGoogle Scholar
  44. Gárate-Lizárraga I, Muñetón-Gómez MdS (2008) Bloom of Peridinium Quinquecorne Abé in La Ensenada De La Paz, Gulf of California (July 2003). Acta Bot Mex 83:33–47CrossRefGoogle Scholar
  45. George B, Kumar JN, Kumar RN (2012) Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. Egypt J Aquat Res 38:157–170CrossRefGoogle Scholar
  46. Gianesella S, Saldanha-Corrêa F, Teixeira C (2000) Tidal effects on nutrients and phytoplankton distribution in Bertioga Channel, São Paulo, Brazil. Aquat Ecosyst Health Manag 3:533–544CrossRefGoogle Scholar
  47. Gladan ŽN, Ujević I, Milandri A, Marasović I, Ceredi A, Pigozzi S, Arapov J, Skejić S, Orhanović S, Isajlović I (2010) Is yessotoxin the main phycotoxin in Croatian waters? Mar Drugs 8:460–470CrossRefGoogle Scholar
  48. Glibert PM, Landsberg JH, Evans JJ, Al-Sarawi MA, Faraj M, Al-Jarallah MA, Haywood A, Ibrahem S, Klesius P, Powell C (2002) A fish kill of massive proportion in Kuwait Bay, Arabian Gulf, 2001: the roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae 1:215–231CrossRefGoogle Scholar
  49. Gottschling M, Čalasan AŽ, Kretschmann J, Gu H (2017) Two new generic names for dinophytes harbouring a diatom as an endosymbiont, Blixaea and Unruhdinium (Kryptoperidiniaceae, Peridiniales). Phytotaxa 306:296–300CrossRefGoogle Scholar
  50. Guo L, Li Z (2003) Effects of nitrogen and phosphorus from fish cage-culture on the communities of a shallow lake in middle Yangtze River basin of China. Aquaculture 226:201–212CrossRefGoogle Scholar
  51. Guo L, Li Z, Xie P, Ni L (2009) Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquac Int 17:229–241CrossRefGoogle Scholar
  52. Hamdan R, Kari F, Othman A, Samsi SM (2003) Climate change, socio-economic and production linkages in East Malaysia aquaculture sector. 2012 International Conference on Future Environment and Energy IPCBEE 28, 201–207Google Scholar
  53. Hii KS, Lim PT, Kon NF, Takata Y, Usup G, Leaw CP (2016) Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: implications for the saxitoxin genes and toxin production. Harmful Algae 56:9–21CrossRefGoogle Scholar
  54. Hillebrand H, Sommer U (1996) Nitrogenous nutrition of the potentially toxic diatom Pseudo-nitzschia pungens f. multiseries Hasle. J Plankton Res 18:295–301CrossRefGoogle Scholar
  55. Holmes MJ, Teo SLM, Lee FC, Khoo HW (1999) Persistent low concentrations of diarrhetic shellfish toxins in green mussels Perna viridis from the Johor Strait, Singapore: first record of diarrhetic shellfish toxins from South-East Asia. Mar Ecol Prog Ser 181:257–268CrossRefGoogle Scholar
  56. Horner RA, Garrison DL, Plumley FG (1997) Harmful algal blooms and red tide problems on the US west coast. Limnol Oceanogr 42:1076–1088CrossRefGoogle Scholar
  57. Horstman D (1981) Reported red-water outbreaks and their effects on fauna of the west and south coasts of South Africa, 1959–1980. Fish Bull S Afr 15:1076–1088Google Scholar
  58. Horstmann U (1980) Observations on the peculiar diurnal migration of a red tide dinophyceae in tropical shallow waters. J Phycol 16:481–485CrossRefGoogle Scholar
  59. Huang C, Qi Y (1997) The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea. J Plankton Res 19:303–318CrossRefGoogle Scholar
  60. Huang L, Jian W, Song X, Huang X, Liu S, Qian P, Yin K, Wu M (2004) Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar Pollut Bull 49:588–596CrossRefGoogle Scholar
  61. Jessup DA, Miller MA, Ryan JP, Nevins HM, Kerkering HA, Mekebri A, Crane DB, Johnson TA, Kudela RM (2009) Mass stranding of marine birds caused by a surfactant-producing red tide. PLoS One 4:e4550CrossRefGoogle Scholar
  62. Jiang ZB, Chen QZ, Zeng JN, Liao YB, Shou L, Liu JJ, 2012. Phytoplankton community distribution in relation to environmental parameters in three aquaculture systems in a Chinese subtropical eutrophic bay. Mar Ecol Prog Ser 446:73–89Google Scholar
  63. Jiang Z, Liao Y, Liu J, Shou L, Chen Q, Yan X, Zhu G, Zeng J (2013a) Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay: induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Mar Pollut Bull 76:315–324CrossRefGoogle Scholar
  64. Jiang Z, Zhu X, Gao Y, Chen Q, Zeng J, Zhu G (2013b) Spatio-temporal distribution of net-collected phytoplankton community and its response to marine exploitation in Xiangshan Bay. Chin J Oceanol Limnol 31:762–773CrossRefGoogle Scholar
  65. Jothy A (1984) The status of shellfish toxicity and related problems in Malaysia. In: White AW, Anraku DM, Hooi K (eds) Toxic red tides and shellfish toxicity in Southeast Asia. Southeast Asian Fisheries Development Centre, Singapore and International Development Research Institute Centre, Ottawa, pp 33–34Google Scholar
  66. Kaptan MS (2013) Assessment of the trophic status of the Mersin bay waters (northeasternMediterranean). Middle East Technical University. MSc thesis, p 93Google Scholar
  67. Kent M, Whyte J, LaTrace C (1995) Gill lesions and mortality in seawater pen-reared Atlantic salmon Salmo salar associated with a dense bloom of Skeletonema costatum and Thalassiosira species. Dis Aquat Org 22:77–81CrossRefGoogle Scholar
  68. Khairy HM, Hussein NR, Faragallah HM, Dorgham MM (2014) The phytoplankton communities in two eutrophic areas on the Alexandria coast, Egypt. Rev Biol Mar Oceanogr 49:267–277CrossRefGoogle Scholar
  69. Kodama M (2010) Paralytic shellfish poisoning toxins: biochemistry and origin. Aqua BioSci Monogr 3(1):1–38CrossRefGoogle Scholar
  70. Krumme U, Liang T-H (2004) Tidal-induced changes in a copepod-dominated zooplankton community in a macrotidal mangrove channel in northern Brazil. Zool Stud 43:404–414Google Scholar
  71. Kudela R, Pitcher G, Probyn T, Figueiras F, Moita T, Trainer V (2005) Harmful algal blooms in coastal upwelling systems. Oceanography 18:184–197CrossRefGoogle Scholar
  72. Lau WLS, Law IK, Liow GR, Hii KS, Usup G, Lim PT, Leaw CP (2017) Life-history stages of natural bloom populations and the bloom dynamics of a tropical Asian ribotype of Alexandrium minutum. Harmful Algae 70:52–63CrossRefGoogle Scholar
  73. Lelong A, Hégaret H, Soudant P, Bates SS (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216CrossRefGoogle Scholar
  74. Lewitus AJ, Koepfler ET, Morris JT (1998) Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt-smarsh estuary. Limnol Oceanogr 43:636–646CrossRefGoogle Scholar
  75. Li H, Li X, Li Q, Liu Y, Song J, Zhang Y (2017) Environmental response to long-term mariculture activities in the Weihai coastal area, China. Sci Total Environ 601:22–31CrossRefGoogle Scholar
  76. Lim PT, Leaw CP, Usup G (2004) First incidence of paralytic shellfish poisoning on the east coast of Peninsular Malaysia. In: Phang SM, Chong VC, Ho SS, Mokhtar N, Ooi JLS (eds) Marine science into the new millennium: new perspectives and challenges. University of Malaya Maritime Research Centre, Kuala Lumpur, pp 661–667Google Scholar
  77. Lim HC, Leaw CP, Su SNP, Teng ST, Usup G, Mohammad Noor N, Lundholm N, Kotaki Y, Lim PT (2012a) Morphology and molecular characterization of Pseudo-nitzschia (Bacillariophyceae) from Malaysian Borneo, including the new species Pseudo-nitzschia circumpora sp. nov. J Phycol 48:1232–1247CrossRefGoogle Scholar
  78. Lim HC, Lim PT, Su SNP, Kotaki Y, Leaw CP (2012b) Morphological observation of two species of Pseudo-nitzschia (Bacillariophyceae). Coast Mar Sci 35:52–57Google Scholar
  79. Lim HC, Lim PT, Su SNP, Teng ST, Leaw CP (2012c) Genetic diversity of Pseudo-nitzschia brasiliana (Bacillariophyceae) from Malaysia. J Appl Phycol 24:1465–1475CrossRefGoogle Scholar
  80. Lim PT, Usup G, Leaw CP (2012d) Harmful algal blooms in Malaysian waters. Sains Malays 41:1509–1515Google Scholar
  81. Lim HC, Leaw CP, Tan TH, Kon NF, Yek LH, Hii KS, Teng ST, Mohd Razali R, Usup G, Iwataki M (2014a) A bloom of Karlodinium australe (Gymnodiniales, Dinophyceae) associated with mass mortality of cage-cultured fishes in West Johor Strait, Malaysia. Harmful Algae 40:51–62Google Scholar
  82. Lim HC, Teng ST, Leaw CP, IwatakiI M, Lim PT (2014b) Phytoplankton assemblage of Merambong shoal, Tebrau Strait with notes on potentially harmful species. Malay Nat J 66:198–211Google Scholar
  83. Liu D, Sun J, Chen Z, Wei T (2001) Effect of N/P ratio on the growth of a red tide diatom Skeletonema costatum. Trans Oceanol Limnol 2:39–44Google Scholar
  84. López-Flores R, Garcés E, Boix D, Badosa A, Brucet S, Masó M, Quintana XD (2006) Comparative composition and dynamics of harmful dinoflagellates in Mediterranean salt marshes and nearby external marine waters. Harmful Algae 5:637–648CrossRefGoogle Scholar
  85. MacKenzie L, de Salas M, Adamson J, Beuzenberg V (2004) The dinoflagellate genus Alexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. Harmful Algae 3:71–92CrossRefGoogle Scholar
  86. Marasovic I, Nincevic Z, Odzak N (1995) The effect of temperature on blooms of Lingulodinium polyedra and Alexandrium minutum in Kastela Bay. Lavoisier, Paris, pp 187–192Google Scholar
  87. Mohamed ZA, Mesaad I (2007) First report on Noctiluca scintillans blooms in the Red Sea off the coasts of Saudi Arabia: consequences of eutrophication. Oceanologia 49(3):337–351Google Scholar
  88. Mohammad-Noor N, Daugbjerg N, Moestrup Ø, Anton A (2004) Marine epibenthic dinoflagellates from Malaysia—a study of live cultures and preserved samples based on light and scanning electron microscopy. Nord J Bot 24:629–690CrossRefGoogle Scholar
  89. Mohammad-Noor N, Adam A, Lim PT, Leaw CP, Lau WLS, Liow GR, Bunnori NM, Hamdan NA, Noor AM, Kemat N, Muniandi D (2017) First report of paralytic shellfish poisoning (PSP) caused by Alexandrium tamiyavanichii in Kuantan Port, Pahang, east coast of Malaysia. Phycol Res 66:37–44. CrossRefGoogle Scholar
  90. Mohd Razali R, Leaw CP, Lim HC, Nyanti L, Ishak I, Lim PT (2015) Harmful microalgae assemblage in the aquaculture area of Aman Island, Northen Strait of Malacca. Malays J Sci 34:24–36Google Scholar
  91. Montelli L (2015) Non-indigenous marine species (NIMS) in biofouling on RAN vessels: threat analysis (No. TR-3149). Defence Science and Technology Organisation Fishermans Bend (Australia) Maritime Division 37 pGoogle Scholar
  92. Navarro N, Leakey RJ, Black KD (2008) Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. Mar Ecol Prog Ser 361:47–58CrossRefGoogle Scholar
  93. Ninčević-Gladan Ž, Bužančić M, Kušpilić G, Grbec B, Matijević S, Skejić S, Marasović I, Morović M (2015) The response of phytoplankton community to anthropogenic pressure gradient in the coastal waters of the eastern Adriatic Sea. Ecol Indic 56:106–115CrossRefGoogle Scholar
  94. Nixon S (1986) Nutrient dynamics and the productivity of marine coastal waters. The Alden Press, Oxford, pp 97–115Google Scholar
  95. Nogueira MG, Henry R, Jorcin A (2006) Ecologia de reservatórios: impactos potenciais, ações de manejo e sistemas em cascata. Rima, São Carlos 472 pGoogle Scholar
  96. Nogueira M, Ferrareze M, Moreira M, Gouvêa R (2010) Phytoplankton assemblages in a reservoir cascade of a large tropical-subtropical river (SE, Brazil). Braz J Biol 70:781–793CrossRefGoogle Scholar
  97. Nordvarg L, Håkanson L (2002) Predicting the environmental response of fish farming in coastal areas of the Åland archipelago (Baltic Sea) using management models for coastal water planning. Aquaculture 206:217–243CrossRefGoogle Scholar
  98. Okaichi T, Nishio S (1976) Identification of ammonia as the toxic principle of red tide of Noctiluca miliaris. Bull Plankton Soc Jpn 23:25–30Google Scholar
  99. Omura T, Iwataki M, Borja VM, Takayama H, Fukuyo Y (2012) Marine phytoplankton of the Western Pacific. Kouseisha Kouseikaku, Tokyo 160 ppGoogle Scholar
  100. Paerl HW, Valdes-Weaver LM, Joyner AR, Winkelmann V (2007) Phytoplankton indicators of ecological change in the eutrophying Pamlico Sound system, North Carolina. Ecol Appl 17:S88–S101CrossRefGoogle Scholar
  101. Painting S, Devlin M, Malcolm S, Parker E, Mills D, Mills C, Tett P, Wither A, Burt J, Jones R (2007) Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication. Mar Pollut Bull 55:74–90CrossRefGoogle Scholar
  102. Palter J, León Coto S, Ballestero D (2007) The distribution of nutrients, dissolved oxygen and chlorophyll a in the upper Gulf of Nicoya, Costa Rica, a tropical estuary. Rev Biol Trop 55:427–436Google Scholar
  103. Parmar TK, Rawtani D, Agrawal Y (2016) Bioindicators: the natural indicator of environmental pollution. Front Life Sci 9:110–118CrossRefGoogle Scholar
  104. Parsons ML, Dortch Q (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47:551558CrossRefGoogle Scholar
  105. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical & biological methods for seawater analysis. Pergamon Press, Oxford 184 ppGoogle Scholar
  106. Patrick R (1973) Diatoms as bioassay organisms. In: Class GE (ed) Bioassay techniques and environmental chemistry. Michigan University Press, Michigan, pp 139–151Google Scholar
  107. Paz B, Riobó P, Fernández ML, Fraga S, Franco JM (2004) Production and release of yessotoxins by the dinoflagellates Protoceratium reticulatum and Lingulodinium polyedrum in culture. Toxicon 44:251–258CrossRefGoogle Scholar
  108. Peng Y, Sun L, Chen H, Wang Z (2002) Study on eutrophication and change of nutrients in the Daya Bay. Mar Sci Bull 21:44–49Google Scholar
  109. Pettine M, Casentini B, Fazi S, Giovanardi F, Pagnotta R (2007) A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: application to Italian coastal waters. Mar Pollut Bull 54:1413–1426CrossRefGoogle Scholar
  110. Pinto da Silva A (1956) De flora lusitana commentarii: plantas novas e novas areas para a flora de Portugal. Agron Lusit 18:20–21Google Scholar
  111. Pitta P, Apostolaki E, Giannoulaki M, Karakassis I (2005) Mesoscale changes in the water column in response to fish farming zones in three coastal areas in the eastern Mediterranean Sea. Estuar Coast Shelf Sci 65:501–512CrossRefGoogle Scholar
  112. Pitta P, Tsapakis M, Apostolaki ET, Tsagaraki T, Holmer M, Karakassis I (2009) ‘Ghost nutrients’ from fish farms are transferred up the food web by phytoplankton grazers. Mar Ecol Prog Ser 374:1–6CrossRefGoogle Scholar
  113. Prema D, Sobhana K, Laxminarayana A, Imelda J, Joseph S, Ignatius B, Jeyabaskaran R, Nandakumar A, Khambadkar L, Anilkumar P (2010) Observations on selected characteristics of water and sediment at the open sea cage culture site of Asian seabass Lates calcarifer (Bloch) off Cochin, south-west coast of India. Indian J Fish 57:53–59Google Scholar
  114. Price C, Black KD, Hargrave BT, Morris Jr JA (2015) Marine cage culture and the environment: effects on water quality and primary production. Aquacult Environ Interact 6:151–174CrossRefGoogle Scholar
  115. Primpas I, Tsirtsis G, Karydis M, Kokkoris GD (2010) Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol Indic 10:178–183CrossRefGoogle Scholar
  116. Quijano-Scheggia S, Olivos-Ortiz A, Rivera-Vilarelle M, Gaviño-Rodríguez J, Álvarez C, Sosa-Avalos R (2013) Cuatro años de monitoreo de fitoplancton en las Bahías de Manzanillo y Santiago, In Segundo congreso Somefan. Universidad de Colima, Mazanillo, ColimaGoogle Scholar
  117. Rensel JE (1992) Harmful effects of the marine diatom Chaetoceros concavicornis on Atlantic salmon (Salmo salar). Ph.D. dissertation, University of Washington, SeattleGoogle Scholar
  118. Riegman R (1995) Nutrient-related selection mechanisms in marine phytoplankton communities and the impact of eutrophication on the planktonic food web. Water Sci Technol 32:63–75CrossRefGoogle Scholar
  119. Round FE, Crawford RM, Mann DG (1990) The diatoms, biology and morphology of the genera. Cambridge University Press, Cambridge, p 747Google Scholar
  120. Sa TT, Boon YH (2010) Malaysia—introduction. In: Encyclopedia of the world’s coastal landforms. Springer, Netherlands, pp 1117–1128CrossRefGoogle Scholar
  121. Salas F, Teixeira H, Marcos C, Marques JC, Pérez-Ruzafa A (2008) Applicability of the trophic index TRIX in two transitional ecosystems: the Mar Menor lagoon (Spain) and the Mondego estuary (Portugal). ICES J Mar Sci: J Conseil 65:1442–1448CrossRefGoogle Scholar
  122. San Diego-McGlone ML, Azanza RV, Villanoy CL, Jacinto GS (2008) Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar Pollut Bull 57:295–301CrossRefGoogle Scholar
  123. Shamsudin L, Awang A, Ambak A, Ibrahim S (1996) Dinoflagellate bloom in tropical fish ponds of coastal waters of the South China Sea. Environ Monit Assess 40:303–311CrossRefGoogle Scholar
  124. Sidik MJ, Rashed-Un-Nabi M, Hoque MA (2008) Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuar Coast Shelf Sci 80:251–260CrossRefGoogle Scholar
  125. Skejić S, Marasović I, Vidjak O, Kušpilić G, Ninčević Gladan Ž, Šestanović S, Bojanić N (2011) Effects of cage fish farming on phytoplankton community structure, biomass and primary production in an aquaculture area in the middle Adriatic Sea. Aquac Res 42:1393–1405CrossRefGoogle Scholar
  126. Smayda T (2006) Harmful algal bloom communities in Scottish coastal waters: relationship to fish farming and regional comparisons, a review. Scottish Executive Environment Group 3, 224. Available online at:
  127. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196CrossRefGoogle Scholar
  128. Song X, Huang L, Zhang J, Huang X, Zhang J, Yin J, Tan Y, Liu S (2004) Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Mar Pollut Bull 49:1036–1044CrossRefGoogle Scholar
  129. Spatharis S, Tsirtsis G, Danielidis DB, Do Chi T, Mouillot D (2007) Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area. Estuar Coast Shelf Sci 73:807–815CrossRefGoogle Scholar
  130. Sundstrom B (1990) The global distribution of harmful effects of phytoplankton. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 537–541Google Scholar
  131. Tan TH, Leaw CP, Hii KS, Lim PT (2012) Morphology of two harmful Prorocentrum (Dinophyceae) from Malaysian Borneo, Proceedings of the 12th Symposium of the Malaysian Society of Applied Biology. Kuala Terengganu, Terengganu, pp 294–300Google Scholar
  132. Tan TH, Lim PT, Mohd Razali R, Leaw CP (2013) Harmful algal species in the Tebrau Strait: an SEM observation of the dinoflagellate assemblage. Ann Microsc 13:4–13Google Scholar
  133. Tan TH, Leaw CP, Leong SCY, Lim LP, Chew SM, Teng ST, Lim PT (2016) Marine micro-phytoplankton of Singapore, with a review of harmful microalgae in the region. Raffles Bull Zool 34:78–96Google Scholar
  134. Tas S, Lundholm N (2016) Temporal and spatial variability of the potentially toxic Pseudo-nitzschia spp. in a eutrophic estuary (sea of Marmara). J Mar Biol Assoc U K 97(7):1483–1494CrossRefGoogle Scholar
  135. Tas S, Yilmaz I (2015) Potentially harmful microalgae and algal blooms in a eutrophic estuary in Turkey. Mediterr Mar Sci 16:432–443CrossRefGoogle Scholar
  136. Taylor DL, Seliger HH (1979) Toxic dinoflagellate blooms. Proceedings of the Second International Conference on Toxic Dinoflagellate Blooms, Key Biscayne, Florida, October 31–November 5, 1978. pp. 505Google Scholar
  137. Teng ST, Leaw CP, Lim HC, Lim PT (2013) The genus Pseudo-nitzschia (Bacillariophyceae) in Malaysia, including new records and a key to species inferred from morphology-based phylogeny. Bot Mar 56:375–398CrossRefGoogle Scholar
  138. Teng ST, Lim HC, Lim PT, Dao VH, Bates SS, Leaw CP (2014) Pseudo-nitzschia kodamae sp. nov. (Bacillariophyceae), a toxigenic species from the Strait of Malacca, Malaysia. Harmful Algae 34:17–28CrossRefGoogle Scholar
  139. Teng ST, Tan SN, Lim HC, Dao VH, Bates SS, Leaw CP (2016) High diversity of Pseudo-nitzschia along the northern coast of Sarawak (Malaysian Borneo), with descriptions of P. bipertita sp. nov. and P. limii sp. nov.(Bacillariophyceae). J Phycol 52:973–989CrossRefGoogle Scholar
  140. Tomas CR (1997) Identifying marine phytoplankton. Academic Press, Califonia 858 ppGoogle Scholar
  141. Tovar A, Moreno C, Mánuel-Vez MP, García-Vargas M (2000) Environmental impacts of intensive aquaculture in marine waters. Water Res 34:334–342CrossRefGoogle Scholar
  142. Train S, Jati S, Rodrigues L, Pivato B (2005) Distribuição espacial e temporal do fitoplâncton em três reservatórios da bacia do rio Paraná. In: Rodrigues L, Thomaz SM, Agostinho AA, Gomes LC (eds) Biocenoses em reservatorios: padroes espaciais e temporais. RIMA, Sao Carlos, pp 73–85Google Scholar
  143. Trainer VL, Hickey BM, Horner RA (2002) Biological and physical dynamics of domoic acid production off the Washington coast. Limnol Oceanogr 47:1438–1446CrossRefGoogle Scholar
  144. Trigueros JM, Orive E (2000) Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. J Plankton Res 22:969–986CrossRefGoogle Scholar
  145. Turkoglu M (2013) Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the sea of Marmara (the Dardanelles, Turkey). Oceanologia 55:709–732CrossRefGoogle Scholar
  146. Turkoglu M, Koray T (2004) Algal blooms in surface waters of the Sinop Bay in the Black Sea, Turkey. Pak J Biol Sci 7:1577–1585CrossRefGoogle Scholar
  147. Usup G, Leaw CP, Asmat A (2002a) Increasing importance of harmful algal blooms in Malaysia, Proceedings of the regional symposium on environment and natural resources, pp 144–153Google Scholar
  148. Usup G, Leaw CP, Ahmad A, Lim PT (2002b) Alexandrium (Dinophyceae) species in Malaysian waters. Harmful Algae 1:265–275CrossRefGoogle Scholar
  149. Van Chu T, Torréton J-P, Mari X, Nguyen HMT, Pham KT, Bouvier T, Bettarel Y, Pringault O, Bouvier C, Rochelle-Newall E (2014) Nutrient ratios and the complex structure of phytoplankton communities in a highly turbid estuary of Southeast Asia. Environ Monit Assess 186:8555–8572CrossRefGoogle Scholar
  150. Warrer-Hansen I (1982) Methods of treatment of waste water from trout farming. EIFAC Technical Paper, pp 113–121Google Scholar
  151. Wehr JD (2011) Freshwater algae: identification and use as bioindicators. Wiley Online Library 436–438 ppGoogle Scholar
  152. Wu R, Lam K, MacKay D, Lau T, Yam V (1994) Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-tropical environment. Mar Environ Res 38:115–145CrossRefGoogle Scholar
  153. Yang C, Albright L (1992) Effects of the harmful diatom Chaetoceros concavicornis on respiration of rainbow trout Oncorhynchus rnykiss. Dis Aquat Org 14:105–114CrossRefGoogle Scholar
  154. Yang X-e, Wu X, Hao H-l, He Z-l (2008) Mechanisms and assessment of water eutrophication. J Zhejiang Univ Sci 9:197–209CrossRefGoogle Scholar
  155. Yucel-Gier G, Pazi I, Kucuksezgin F, Kocak F (2011) The composite trophic status index (TRIX) as a potential tool for the regulation of Turkish marine aquaculture as applied to the eastern Aegean coast (Izmir Bay). J Appl Ichthyol 27:39–45CrossRefGoogle Scholar
  156. Zhang S, Liu J, Wei S, Gao J, Wang D, Zhang K (2006) Impact of aquaculture on eutrophication in Changshou Reservoir. Chin J Geochem 25:90–96CrossRefGoogle Scholar
  157. Zhaohui W, Jiangang Z, Zhang Y, Yu C (2009) Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. J Environ Sci 21:1268–1275CrossRefGoogle Scholar
  158. Zheng A-R, Shen H-W (2001) The mechanism of low nutrients-high productivity in Daya Bay. Mar Sci (Qingdao Chinese Edition) 25:52–52Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bachok Marine Research Station, Institute of Ocean and Earth SciencesUniversity of MalayaBachokMalaysia
  2. 2.Faculty of Resource Science and TechnologyUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations