Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22766–22774 | Cite as

An exploratory study of energy reserves and biometry as potential tools for assessing the effects of pest management strategies on the earwig, Forficula auricularia L

  • Séverine Suchail
  • Adrien Le Navenant
  • Yvan Capowiez
  • Alain Thiéry
  • Magali Rault
Research Article

Abstract

Apple orchards are heavily treated crops and some sprayed insecticides are recognized to have toxic effects on non-target arthropods. Earwigs are important natural enemies in pip-fruit orchards and contribute to the biological control of aphids. In addition, due to their ease of capture and identification, they are an interesting potential bioindicator of the possible detrimental effects of different orchard management strategies. In this study, we measured the energy reserves and some morphological traits of Forficula auricularia L. sampled in apple orchards under management strategies (organic versus integrated pest management (IPM)). We observed a significant decrease in mass (22 to 27%), inter-eye width (3%), and prothorax width (2 to 5%) in earwigs from IPM compared to organic orchards. Energy body reserves also confirmed these results with a significant decrease of 48% in glycogen and 25 to 42% in lipid content in earwigs from IPM compared to organic orchards. However, the protein content was approximately 70% higher in earwigs from IPM than in organic orchards. Earwigs sampled in IPM orchards may adapt to minimize the adverse toxic effects of pesticide treatments using a large number of strategies, which are reflected in changes to their energy reserves. These strategies could, in turn, influence the population dynamics of natural enemies and impair their role in the biological control of pests in apple orchards.

Keywords

Earwig Energy reserves Glycogen Lipid Protein Biometry Pest management strategy 

Notes

Acknowledgments

We thank Alain Tonetto (Pratim, Aix Marseille University) for assistance in taking the electronic microscopy photos.

Funding Information

We are grateful to the Rovaltain Fundation for its financial support of the I-ResPect project.

Supplementary material

11356_2018_2371_MOESM1_ESM.docx (54 kb)
ESM 1 (DOCX 53 kb)

References

  1. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  2. Anand A, Lorenz MW (2008) Age-dependent changes of fat body stores and the regulation of fat body lipid synthesis and mobilisation by adipokinetic hormone in the last larval instar of the cricket, Gryllus bimaculatus. J Insect Physiol 54:1404–1412CrossRefGoogle Scholar
  3. Arrese EL, Soulage JL (2010) Insect fat body: energy metabolism and regulation. Annu Rev Entomol 55:207–225CrossRefGoogle Scholar
  4. Badji CA, Guedes RNC, Silva AA, Araujo RA (2004) Impact of deltamethrin on arthropods in maize under IPM and no-tillage cultivation. Crop Prot 23:1031–1039CrossRefGoogle Scholar
  5. Bednarska AJ, Stachowicz I, Kurianska L (2013) Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients. Environ Sci Pollut Res 20:390–398CrossRefGoogle Scholar
  6. Calow P (1991) Physiological costs of combating chemical toxicants: ecological implications. Comp Biochem Physiol 100(1/2):3–6Google Scholar
  7. Campos MR, Picanço MC, Martins JC, Tomaz AC, Guedes RNC (2011) Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Prot 30:1535–1540CrossRefGoogle Scholar
  8. Chowanski S, Lubawy J, Spochacz M, Paluch E, Smykalla G, Rosinski G, Slocinska M (2015) Cold induced changes in lipid, protein and carbohydrate levels in the tropical insect Gromphadorhina coquereliana. Comp Biochem and Physiol Part A 183:57–63CrossRefGoogle Scholar
  9. Congdon JD, Dunham AE, Hopkins WA, Rowe CL (2001) Resource allocation-based life histories: a conceptual basis for studies of ecological toxicology. Environ Toxicol Chem 20(8):1698–1703CrossRefGoogle Scholar
  10. Da Silva JDJ, Mendes J, Lomonaco C (2004) Developmental stress by diflubenzuron in Haematobia irritans (L.) (Diptera: Muscidae). Neotrop Entomol 33(2):249–253Google Scholar
  11. Debras JF, Dussaud A, Rieux R, Dutoit T (2007) Prospective research on the “source” role of hedges in integrated fruit production. The case of earwigs: Forficula auricularia L. et Forficula pubescens L. Gené. CR Biol 330:664–673 (in French) CrossRefGoogle Scholar
  12. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  13. Dib H, Simon S, Sauphanor B, Capowiez Y (2010) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in South-Eastern France. Biol Control 55:97–109CrossRefGoogle Scholar
  14. Dib H, Sauphanor B, Capowiez Y (2016) Effect of management strategies on arthropod communities in the colonies of rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in South-Eastern France. Agric Ecosyst Environ 216:203–206CrossRefGoogle Scholar
  15. Ferreira NGC, Morgado R, Santos MJG, Soares AMVM, Loureiro S (2015) Biomarkers and energy reserves in the isopod Porcellionides pruinosus: the effects of long-term exposure to dimethoate. Sci Total Environ 502:91–102CrossRefGoogle Scholar
  16. Ffrench-Constant RH, Vickerman GP (1985) Soil contact toxicity of insecticides to the European earwig Forficula auricularia (Dermaptera). Entomophaga 30:271–278CrossRefGoogle Scholar
  17. Fountain MT, Harris AL (2015) Non-target consequences of insecticides used in apple orchards on Forficula auricularia L. (Dermaptera: Forficulidae). Biol Control 91:27–33CrossRefGoogle Scholar
  18. Frings CS, Fendley TW, Dunn RT, Queen CA (1972) Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clin Chem 18(7):673–674Google Scholar
  19. García-de la Parra LM, Bautista-Covarrubias JC, Rivera-de la Rosa N, Betancourt-Lozano M, Guilhermino L (2006) Effects of methamidophos on acetylcholinesterase activity, behavior, and feeding rate of the white shrimp (Litopenaeus vannamei). Ecotox Environ Safe 65:372–380CrossRefGoogle Scholar
  20. Giglio A, Giulianni PG, Zetto T, Talarica F (2011) Effects of the pesticide dimethoate on a nontarget generalist carabid, Pterostichus melas italicus (Dejean, 1828) (Coleoptera: Carabidae). Italian J Zoology 78(4):471–477CrossRefGoogle Scholar
  21. Giglio A, Cavaliere F, Giulianni PG, Mazzei A, Talarica F, Vommaro ML, Brandmayr P (2017) Impact of agrochemicals on non-target species : Calathus fuscipes Goeze 1777 (Coleoptera : Carabidae) as model. Ecotox Environ Safety 142:522–529CrossRefGoogle Scholar
  22. Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. Pesticides – Toxic Aspects pp:187–230Google Scholar
  23. Givaudan N, Suchail S, Rault M, Mouneyrac C, Capowiez Y (2016) Impact of orchard management strategies on earthworm (Allobophora chlorotica) energy reserves. Soil Biol Chem 100:252–254CrossRefGoogle Scholar
  24. Gnaiger E (1983) Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Aquatic and physiological applications. Springer, Berlin, pp 337–345CrossRefGoogle Scholar
  25. Habes D, Messiad R, Gousmia S, Grib L (2013) Effects of an inorganic insecticide (boric acid) against Blattella germanica: morphometric measurements and biochemical composition of ovaries. Afr J Biotech 12(18):2492–2497Google Scholar
  26. Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773CrossRefGoogle Scholar
  27. Huang Z, Shi P, Dai J, Du J (2004) Protein metabolism in Spodoptera litura (F.) is influenced by the botanical insecticide azadirachtin. Pest Biochem Physiol 80:85–93CrossRefGoogle Scholar
  28. Jeon J, Kretschmann A, Escher BI, Hollender J (2013) Characterization of acetylcholinesterase inhibition and energy allocation in Daphnia magna exposed to carbaryl. Ecotox Environ Safety 98:28–35CrossRefGoogle Scholar
  29. Jørgensen LN (1999) Denmark’s action plans for pesticides: status and role of research. Nordisk Jordbrugsforskning 81:201–202Google Scholar
  30. Jouni F, Sanchez-Hernandez JC, Mazzia C, Jobin M, Capowiez Y, Rault M (2018) Interspecific differences in biochemical and behavioral biomarkers in endogenic earthworms exposed to ethyl-parathion. Chemosphere 85–93Google Scholar
  31. Kölliker M, Vancassel M (2007) Maternal attendance and the maintenance of family groups in common earwigs (Forficula auricularia): a field experiment. Ecological Entomology 32:24–27CrossRefGoogle Scholar
  32. Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228CrossRefGoogle Scholar
  33. Malagnoux L, Capowiez Y, Rault M (2015a) Impact of pesticide exposure on the predation activity of the European earwig, Forficula auricularia. Environ Sci Pollut Res 22:14116–14126CrossRefGoogle Scholar
  34. Malagnoux L, Marliac G, Simon S, Rault M, Capowiez Y (2015b) Management strategies in apple orchards influences earwig community. Chemosphere 124:156–162CrossRefGoogle Scholar
  35. Marcus SR, Fiumera AC (2016) Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. J Insect Physiol 91-92:18–25CrossRefGoogle Scholar
  36. Markow TN (1995) Evolutionary ecology and developmental instability. Annu Rev Entomol 40:105–120Google Scholar
  37. Markwell MAK, Hass SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210CrossRefGoogle Scholar
  38. Martinou AF, Seraphides N, Stavrinides MC (2014) Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–173CrossRefGoogle Scholar
  39. Mazzia C, Pasquet A, Caro G, Thénard J, Cornic J-F, Hedde M, Capowiez Y (2015) The impacts of management strategies in apple orchards on the structural and functional diversity of epigeal spiders. Ecotoxicology 24:616–625CrossRefGoogle Scholar
  40. Mclaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55:201–2012CrossRefGoogle Scholar
  41. Moerkens R, Leirs H, Peusens G, Belien T, Gobin B (2012) Natural and human causes of earwig mortality during winter: temperature, parasitoids and soil tillage. J Appl Entomol 136:490–500CrossRefGoogle Scholar
  42. Nash MA, Thomson LJ, Hoffmann AA (2008) Effect of remnant vegetation, pesticides, and farm management on abundance of the beneficial predator Notonomus gravis (Chaudoir) (Coleoptera: Carabidae). Biol Control 46:83–93CrossRefGoogle Scholar
  43. Nath BS (2003) Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pest Biochem Physiol 74:73–84CrossRefGoogle Scholar
  44. Nestel ND, Papadopoulos NT, Pascacio-Villafán C, Righini N, Altuzar-Molina AR, Aluja M (2016) Resource allocation and compensation during development in holometabolus insects. J Insect Physiol 95:78–88CrossRefGoogle Scholar
  45. Parrou JL, François J (1997) A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:186–188CrossRefGoogle Scholar
  46. Pekar S (1999) Effect of IPM practices and IPM spraying on spider population dynamics in an apple orchard. Agric Ecosyst Environ 26:155–166CrossRefGoogle Scholar
  47. Rharrabe K, Amri H, Bouayad N, Sayah F (2008) Effects of azadirachtin on post-embryonic development, energy reserves and a-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). J Stored Prod Res 44:290–294CrossRefGoogle Scholar
  48. Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotox Environ Safety 49:131–138CrossRefGoogle Scholar
  49. Romeu-Dalmau C, Pinol J, Espadaler X (2012) Friend or foe? The role of earwigs in a Mediterranean organic citrus orchard. Biol Control 63:143–149CrossRefGoogle Scholar
  50. Sánchez-Bayo F (2009) From simple toxicological models to prediction of toxic effects in time. Ecotoxicology 18:343–354CrossRefGoogle Scholar
  51. Sauphanor B (1992) An aggregation pheromone in the European earwig Forficula auricularia L. Entomol Exp Applic 62(3):285–291CrossRefGoogle Scholar
  52. Sauphanor B, Stäubli A (1994) Evaluation au champ des effets secondaires des pesticides sur Forficula auricularia et Anthocoris nemoralis: validation des résultats de laboratoire. In: Vogt H (ed) OILB–SROP Section Régionale Ouest Paléarctique, Pesticides and beneficial organisms, vol. 17. Bulletin OILB/SROP, pp 83–88Google Scholar
  53. Sauphanor B, Dirwimmer C, Boutin S, Chaussabel AL, Dupont N, Fauriel J, Gallia V, Lambert N, Navarro E, Parisi L, Plenet D, Ricaud V, Sagnes JL, Sauvaitre D, Simon S, Speich P, Zavagli F (2009) Comparative analysis of different systems in fruit tree farming. In: INRA (Ed.), Ecophyto R&D: towards crop management systems that save crop protection products, expert report, volume IV, National Institute of agronomic researchGoogle Scholar
  54. Sharley DJ, Hoffmann AA, Thomson LJ (2008) The effects of soil tillage on beneficial invertebrates within the vineyard. Agric For Entomol 10:233–243CrossRefGoogle Scholar
  55. Shaw PW, Wallis DR (2010) Susceptibility of the European earwig, Forficula auricularia, to insecticides residues on apple leaves. New Zeland Plant Prot 63:55–59Google Scholar
  56. Staempfi C, Tarradellas J, Becker-van Slooten K (2007) Effects of dinoseb on energy reserves in the soil arthropod Folsomia candida. Ecotox Environ Safety 68:263–271CrossRefGoogle Scholar
  57. Steele JE (1982) Glycogen phosphorylase in insects. Insect Biochem 12(2):131–147CrossRefGoogle Scholar
  58. Tilton FA, Bammler TK, Gallagher EP (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Phys C 153:9–16Google Scholar
  59. Van Der Horst DJ (2003) Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp Biochem Physiol B136:217–226Google Scholar
  60. Yasmin S, Souza D (2010) Effects of pesticides on the growth and reproduction of earthworm: a review. Appl Environ Soil Sci 2010:1–9.  https://doi.org/10.1155/2010/678360 CrossRefGoogle Scholar
  61. Ziegler R (1991) Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. J Comp Physiol Part B 161:125–131Google Scholar
  62. Ziegler R, Van Antwerpen R (2006) Lipid uptake by insect oocytes. Insect Biochem Mol Biol 36:264–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Séverine Suchail
    • 1
  • Adrien Le Navenant
    • 1
    • 2
  • Yvan Capowiez
    • 3
  • Alain Thiéry
    • 1
  • Magali Rault
    • 1
  1. 1.UAPV, Université d’Avignon et des Pays de Vaucluse, Aix Marseille Univ, CNRS IRD, Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Pôle AgrosciencesAvignon CedexFrance
  2. 2.INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site AgroparcAvignon Cedex 9France
  3. 3.INRA, UMR 1114 Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Site AgroparcAvignon Cedex 9France

Personalised recommendations