Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 5, pp 4192–4201 | Cite as

Nanostructured catalysts applied to degrade atrazine in aqueous phase by heterogeneous photo-Fenton process

  • Tamara B. Benzaquén
  • Deicy A. Barrera
  • Paola M. Carraro
  • Karim Sapag
  • Orlando M. Alfano
  • Griselda A. EimerEmail author
Advanced Oxidation Technologies: State-of-the-Art in Ibero-American Countries
  • 60 Downloads

Abstract

SBA-15 and KIT-6 materials have been synthesized and modified with iron salts by the wet impregnation method with different metal loadings. The different mesostructures obtained were characterized by N2 adsorption–desorption at 77 K, X-ray diffraction, temperature-programmed reduction, and ultraviolet–visible spectroscopy. These iron-containing mesostructured materials have been successfully tested for the heterogeneous photo-Fenton degradation of aqueous solutions of dangerous herbicides, such as atrazine, using UV–visible light irradiation, at room temperature and close to neutral pH. The results showed that the Fe/SBA-15 (10%) and Fe/KIT-6 (5%) catalysts exhibited the highest activities. However, the Fe/KIT-6 (5%) catalyst with minor Fe loading than Fe/SBA-15 (10%) presented a higher degradation of atrazine (above 98% in a reaction time of 240 min). Therefore, the interconnectivity of the cage-like mesopores had an important influence on the catalytic activity, favoring probably mass-transfer effects. Thus, the high performance of these materials indicates that the heterogeneous via of photo-Fenton process can also be efficiently employed to treat wastewaters containing pollutants such as herbicides, in order to reduce them to simplest and less toxic molecules.

Keywords

Mesoporous materials SBA-15 KIT-6 Heterogeneous photo-Fenton process Degradation Pollutants 

Notes

Acknowledgments

The authors are grateful to Universidad Tecnológica Nacional (UTN-FRC), Universidad Nacional del Litoral (UNL), Universidad Nacional de San Luis (UNSL), Consejo Nacional de Investigaciones Científicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support.

Funding

This work was supported by Universidad Tecnológica Nacional (UTN-FRC) (MAUTICO0004427TC), Consejo Nacional de Investigaciones Científicas (CONICET) (PIP 112–2013-0100412), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT-2015-1485 and PICT 2015-2651).

Supplementary material

11356_2018_2348_MOESM1_ESM.pdf (203 kb)
ESM 1 (PDF 203 kb)
11356_2018_2348_MOESM2_ESM.pdf (175 kb)
ESM 2 (PDF 175 kb)

References

  1. Acosta EJ, Steffensen MB, Tichy SE, Simanek EE (2004) Removal of atrazine from water using covalent sequestration. J Agric Food Chem 52:545–549.  https://doi.org/10.1021/jf0349331 CrossRefGoogle Scholar
  2. ASAP Model 2000, 2010, 2020 Bibliography of Papers Year of 2013. http://www.micromeritics.com/Repository/Files/2013_Bibliography_of_Papers_-ASAP_Models_2000-2010-2020.pdf. Accessed 25 May 2018
  3. Barrera D, Villarroel-Rocha J, Marenco L, Oliva M, Sapag K (2011) Non-hydrothermal synthesis of cylindrical mesoporous materials: influence of the surfactant/silica molar ratio. Adsorpt Sci Technol 29:975–988.  https://doi.org/10.1260/0263-6174.29.10.975 CrossRefGoogle Scholar
  4. Benzaquén TB, Isla MA, Alfano OM (2012) Quantum efficiencies of the photo-Fenton degradation of atrazine in water. Water Sci Technol 66:2209–2216.  https://doi.org/10.2166/wst.2012.439 CrossRefGoogle Scholar
  5. Benzaquén TB, Isla MA, Alfano OM (2014) Fenton and photo-Fenton processes for the degradation of atrazine: a kinetic study. J Chem Technol Biotechnol 90:459–467.  https://doi.org/10.1002/jctb.4324 CrossRefGoogle Scholar
  6. Benzaquén TB, Isla MA, Alfano OM (2016) Combined chemical oxidation and biological processes for herbicide degradation. Chem Technol Biotechnol 91:718–725.  https://doi.org/10.1002/jctb.4635 CrossRefGoogle Scholar
  7. Benzaquén TB, Cuello NI, Alfano OM, Eimer GA (2017) Degradation of atrazine over a heterogeneous photo-Fenton process with iron modified MCM-41 materials. Catal Today 296:51–58.  https://doi.org/10.1016/j.cattod.2017.04.021 CrossRefGoogle Scholar
  8. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135.  https://doi.org/10.1016/j.jhazmat.2014.04.054 CrossRefGoogle Scholar
  9. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501CrossRefGoogle Scholar
  10. Boudart M, Ertl G, Kn€ozinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  11. Chen H, Bramanti E, Longo I, Onor M, Ferrari C (2011) Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor. J Hazard Mater 186:1808–1815.  https://doi.org/10.1016/j.jhazmat.2010.12.065 CrossRefGoogle Scholar
  12. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598CrossRefGoogle Scholar
  13. Clarizia L, Russo D, Di Somma I, Marotta R, Andreozzi R (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. App Cat B: Environ 209:358–371.  https://doi.org/10.1016/j.apcatb.2017.03.011 CrossRefGoogle Scholar
  14. Cuello NI, Elías VR, Rodriguez Torres CE, Crivello ME, Oliva MI, Eimer GA (2015) Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior. Microporous Mesoporous Mater 203:106–115.  https://doi.org/10.1016/j.micromeso.2014.10.005 CrossRefGoogle Scholar
  15. Fellenz NA, Bengoa JF, Marchetti SG, Gervasini A (2012) Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: a pathway to improve the activity and the olefins production in the Fischer? Tropsch Synthesis Appl Catal A: Gen 435–436:187–196CrossRefGoogle Scholar
  16. Fenton HJH, Jackson H (1899) The oxidation of polyhydric alcohols in presence of iron. J Chem Soc Trans 75:1–11.  https://doi.org/10.1039/CT8997500001 CrossRefGoogle Scholar
  17. Fragoeiro S, Magan N (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete crysosporium and Trametes versicolor. Environ Microbiol 7:348–355CrossRefGoogle Scholar
  18. Guo S, Zhang G, Wang J (2014) Photo-Fenton degradation of rhodamine B using Fe2O3-kaolin as heterogeneous catalyst: characterization, process optimization and mechanism. J Colloid Interface Sci 433:1–8.  https://doi.org/10.1016/j.jcis.2014.07.017 CrossRefGoogle Scholar
  19. He F, Luo J, Liu S (2016) Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene. Chem Eng J 294:362–370CrossRefGoogle Scholar
  20. Hincapié M, Maldonado MI, Oller I, Gernjak W, Sánchez-Pérez JA, Ballesteros M et al (2005) Solar photocatalytic degradation and detoxification of EU priority substances. Catal Today 101:203–210CrossRefGoogle Scholar
  21. Hu C, Yu JC, Hao Z, Wong PK (2003) Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. ApplCatal B: Environ 42:47–55CrossRefGoogle Scholar
  22. Hurst NW, Gentry SJ, Jones A (1982) Temperature programmed reduction. Cat Rev Sci Eng 24:233–309.  https://doi.org/10.1080/03602458208079654 CrossRefGoogle Scholar
  23. Hussain M, Akhter P, Fino D, Russo N (2013) Modified KIT-6 and SBA-15-spherical supported metal catalysts for N2O decomposition. J Environ Chem Eng 1:164–174.  https://doi.org/10.1016/j.jece.2013.04.013 CrossRefGoogle Scholar
  24. Jones CW (1999) Applications of hydrogen peroxide and derivatives. Royal Society of Chemistry, CambridgeGoogle Scholar
  25. Kleitz F, Choi SH, Ryong R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 17:2136–2213.  https://doi.org/10.1039/B306504A CrossRefGoogle Scholar
  26. Liu Y, He X, Fu Y, Dionysiou DD (2016) Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chem Eng J 284:1317–1327CrossRefGoogle Scholar
  27. Maldonado MI, Passarinho PC, Oller I, Gernjak W, Fernández P, Blanco J, Malato S (2007) Photocatalytic degradation of EU priority substances:a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. J Photochem Photobiol A Chem 185:354–363.  https://doi.org/10.1016/j.jphotochem.2006.06.036 CrossRefGoogle Scholar
  28. Mesa M, Sierra L, Guth JL (2008) Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous Mesoporous Mater 112:338–350.  https://doi.org/10.1016/j.micromeso.2007.10.008 CrossRefGoogle Scholar
  29. Montiel-Palacios E, Medina-Mendoza AK, Sampieri A, Angeles-Chávez C, Hernández-Pérez I, Suárez-Parra R (2009) Photo-catalysis of phenol derivatives with Fe2O3 nanoparticles dispersed on SBA-15. J Cer Proc Res 10:548–552Google Scholar
  30. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  31. Orozco SL, Bandala ER, Arancibia-Bulnes CA, Serrano B, Suárez-Parra R, Hernández-Pérez I (2008) Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe (II)/H2O2 and Fe (III)/H2O2 systems. J Photochem Photobio A: Chem 198:144–149CrossRefGoogle Scholar
  32. Pignatello JJ, Lui D, Huston P (1999) Evidence for additional oxidant in the photo assisted Fenton reaction. Environ Sci Technol 33:1832–1839CrossRefGoogle Scholar
  33. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394.  https://doi.org/10.1021/ar00143a001 CrossRefGoogle Scholar
  34. Tsoncheva T, Ivanova L, Rosenholm J, Linden M (2009) Cobalt oxide species supported on SBA-15, KIT-5 and KIT-6 mesoporous silicas for ethyl acetate total oxidation. App Cat B: Environ 89:365–374.  https://doi.org/10.1016/j.apcatb.2008.12.015 CrossRefGoogle Scholar
  35. USEPA (2007) Atrazine chemical summary, toxicity and exposure assessment for children’s healthGoogle Scholar
  36. Zhang Q, Li Y, An D, Wang Y (2009) Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen. Appl Catal, A 356:103–111.  https://doi.org/10.1016/j.apcata.2008.12.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tamara B. Benzaquén
    • 1
  • Deicy A. Barrera
    • 2
  • Paola M. Carraro
    • 1
  • Karim Sapag
    • 2
  • Orlando M. Alfano
    • 3
  • Griselda A. Eimer
    • 1
    Email author
  1. 1.CITEQMaestro López y Cruz Roja ArgentinaCórdobaArgentina
  2. 2.INFAPSan LuisArgentina
  3. 3.INTECSanta FeArgentina

Personalised recommendations