Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 19323–19337 | Cite as

Efficiency of biomonitoring methods applying tropical bioindicator plants for assessing the phytoxicity of the air pollutants in SE, Brazil

  • Ricardo Keiichi NakazatoEmail author
  • Marisia Pannia Esposito
  • Poliana Cardoso-Gustavson
  • Patrícia Bulbovas
  • Andrea Nunes Vaz Pedroso
  • Pedro Ivo Lembo Silveira de Assis
  • Marisa Domingos
Review Article


In the tropical region, the greatest challenge of the biomonitoring approach is to establish linear relationships between biomarkers measured in plants and pollutant concentrations, since the bioindicator responses can be intensified or restricted by climatic variations. In southeastern Brazil, there are two regions affected by air pollution, where the Atlantic Forest remains and should be preserved. Consequently, both areas have been monitored by biomonitoring procedures using standardized and tropical plants. The industrial complex settled in Cubatão is one of the world’s most famous examples of environmental pollution and degradation, with consequent decline of the Atlantic Forest. An oil refinery is among the most polluting industries in the Cubatão region. The other region is located in the Metropolitan Region of Campinas (MRC). The MRC has been affected by high levels of air pollutants originated from road traffic and is responsible for over 80% of CO, NOx, and hydrocarbon emissions and develops industrial activities that emit about 70% of the particulate matter present in the region. Both regions are distinguished by the climate, despite the fact that they are only about 130 km far from each other. Several studies carried out by our group in these regions aimed to establish the best native tree species and respective potential biomarkers for future assessment of pollution effects on tropical Forests. We present a critical review about the efficiency of native species compared to standardized bioindicator plants considering antioxidant defense system, nutrient accumulation, and microscopic aspects when exposed to atmospheric pollutants and climate.


Biomarkers Bioindicators Oxidative stress Ozone Particulate matter Bioaccumulation Tropical 


  1. Aguiar-Silva C, Brandão SE, Domingos M, Bulbovas P (2016) Antioxidant responses of Atlantic Forest native tree species as indicators of increasing tolerance to oxidative stress when they are exposed to air pollutants and seasonal tropical climate. Ecol Indic 63:154–164. CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. CrossRefGoogle Scholar
  3. Alves, E. S., Moura, B. B., Pedroso, A. N. V, Tresmondi, F., & Domingos, M. (2011). The efficiency of tobacco bel-W3 and native species for ozone biomonitoring in subtropical climate, as revealed by histo-cytochemical techniques. Environ Pollut, 159(12), 3309–3315.
  4. Arndt, U., & Schweizer, A. (1991). The use of bioindicators for environmental monitoring in tropical and subtropical countries. In H. Ellenberg (Ed.), Biological Monitoring: Signals from the Environment (pp. 199–260). ViewegGoogle Scholar
  5. Ashmore MR (2005) Asseing the future global impacts of ozone on vegitation. Plant Cell Env 28:949–964CrossRefGoogle Scholar
  6. Assis PILS, Moraes RM, Nakazato RK (2018) Will the shift from crude oil to natural gas burning for power generation at an oil refinery increase ozone concentrations in the region of Cubatão (SE-Brazil)?. Ecol Indic 85:921–931Google Scholar
  7. Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146(3):678–691. CrossRefGoogle Scholar
  8. Boian C, Andrade, M. de F. (2012) Characterization of ozone transport among metropolitan regions. Rev Bras Meteorol 27(2):229–242.
  9. Brandão SE, Bulbovas P, Lima MEL, Domingos M (2017) Biochemical leaf traits as indicators of tolerance potential in tree species from the Brazilian Atlantic Forest against oxidative environmental stressors. Sci Total Environ 575:406–417. CrossRefGoogle Scholar
  10. Bulbovas P, Camargo CZS, Domingos M (2015) Ryegrass cv. Lema and guava cv. Paluma biomonitoring suitability for estimating nutritional contamination risks under seasonal climate in southeastern Brazil. Ecotoxicol Environ Saf 118:149–157. CrossRefGoogle Scholar
  11. Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut (Barking, Essex : 1987) 143(3):427–434. CrossRefGoogle Scholar
  12. Bussotti F (2008) Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. Glob Chang Biol 14(11):2727–2739. CrossRefGoogle Scholar
  13. Bussotti F, Pollastrini M (2015) Evaluation of leaf features in forest trees: methods, techniques, obtainable information and limits. Ecol Indic 52:219–230. CrossRefGoogle Scholar
  14. Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28. CrossRefGoogle Scholar
  15. Cardoso-Gustavson P, Fernandes FF, Alves ES, Victorio MP, Moura BB, Domingos M, Rodrigues CA, Ribeiro AP, Nievola CC, Figueiredo AMG (2016) Tillandsia usneoides: a successful alternative for biomonitoring changes in air quality due to a new highway in São Paulo, Brazil. Environ Sci Pollut Res 23(2):1779–1788. CrossRefGoogle Scholar
  16. Caregnato FF, Koller CE, MacFarlane GR, Moreira JCF (2008) The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 56(6):1119–1127. CrossRefGoogle Scholar
  17. Caregnato FF, Clebesch CC, Rocha RF, Feistauer LBH, Oliveira PL, Divan Junior AD, Moreira JCF (2010) Ozone exposure differentially affects oxidative stress parameters in distinct Phaseolus vulgaris L. varieties. J Plant Interactions 5(2):111–115. CrossRefGoogle Scholar
  18. Caregnato FF, Bortolin RC, Divan Junior AM, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere 93:320–330CrossRefGoogle Scholar
  19. Cassimiro JC, de Souza SR, de Moraes RM (2015) Trocas gasosas e injúrias foliares visíveis em plantas jovens de Astronium graveolens Jacq. fumigadas com ozônio. Hoehnea 42(4):687–694. CrossRefGoogle Scholar
  20. Cassimiro JC, Moura BB, Alonso R, Meirelles ST, Moraes RM (2016) Ozone stomatal flux and O3 concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species. Environ Pollut 213:1007–1015. CrossRefGoogle Scholar
  21. CETESB (2015) Biomonitoramento da Vegetação na Região de Cubatão: Fluoreto, Cádmio, Chumbo, Mercúrio e Níquel. 2012–2013. São Paulo.
  22. CETESB. (2016). Relatórios Qualidade Do Ar.
  23. Dafré-Martinelli, M. (2015). Aporte e deposição de elementos químicos marcadores de poluição atmosférica em fragmentos florestais na região metropolitana de Campinas , São Paulo. Instituto de Botânica da Secretaria do Meio AmbienteGoogle Scholar
  24. Dafré-Martinelli M, Nakazato RK, Dias APL, Rinaldi MCS, Domingos M (2011) The redox state of Ipomoea nil “scarlet O”hara’ growing under ozone in a subtropical area. Ecotoxicol Environ Saf 74(6):1645–1652. CrossRefGoogle Scholar
  25. De Nicola, F., Maisto, G., Prati, M. V, & Alfani, a. (2008). Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut(Barking, Essex : 1987), 153(2), 376–383.
  26. De Temmerman, L., Bell, J. N., Garrec, J. P., Klumpp, A., & Tonneijck, A. E. G. (2004). Biomonitoring of air pollutants with plants - considerations for the future. In A. Klumpp, W. Ansel, & G. Klumpp (Eds.), Urban Air Pollution, Bioindication and Environmental Awareness (Vol. 1, pp. 337–373). Göttingen.
  27. Dias APL, Dafré M, Rinaldi MCS, Domingos M (2011) How the redox state of tobacco “bel-W3” is modified in response to ozone and other environmental factors in a sub-tropical area? Environ Pollut 159(2):458–465. CrossRefGoogle Scholar
  28. Dias APL, Rinaldi MCS, Domingos M (2016) Foliar accumulation of polycyclic aromatic hydrocarbons in native tree species from the Atlantic Forest (SE-Brazil). Sci Total Environ 544:175–184. CrossRefGoogle Scholar
  29. Divan Junior AM, De Oliveira PL, Perry CT, Atz VL, Azzarini-Rostirola LN, Raya-Rodriguez MT (2009) Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol Indic 9(6):1156–1162. CrossRefGoogle Scholar
  30. Domingos M, Klumpp A, Klumpp G (1998) Air pollution impact on the Atlantic Forest at the Cubatão region, SP, Brazil. Ciencia & Cultura 50:230–236Google Scholar
  31. Domingos M, Klumpp A, Klumpp G (2003a) Disturbances to the Atlantic rainforest in Southeast Brazil. Air Pollution Impacts on Crops and Forests. Imperial College Press, London, pp 287–308CrossRefGoogle Scholar
  32. Domingos, M., Klumpp, A., Rinaldi, M. C. S., Modesto, I. F., Klumpp, G., & Delitti, W. B. C. (2003b). Combined effects of air and soil pollution by fluoride emissions on Tibouchina pulchra Cogn ., at Cubatão , SE Brazil , and their relations with. Plant and Soil, 297–308Google Scholar
  33. Domingos M, Bulbovas P, Camargo CZS, Aguiar-Silva C, Brandão SE, Dafré-Martinelli M, Dias APL, Engela MRGS, Gagliano J, Moura BB, Alves ES, Rinaldi MCS, Gomes EPC, Furlan CM, Figueiredo AMG (2015) Searching for native tree species and respective potential biomarkers for future assessment of pollution effects on the highly diverse Atlantic Forest in SE-Brazil. Environ Pollut 202(August):85–95. CrossRefGoogle Scholar
  34. Elias, C., Fernandes, E., França, E., & Bacchi, M. (2006). Seleção de epífitas acumuladoras de elementos químicos na Mata Atlântica. Biota neotropica, 6. Accessed 23 November 2015
  35. El-Khatib AA (2003) The response of some common Egyptian plants to ozone and their use as biomonitors. Environ Pollut 124(3):419–428. CrossRefGoogle Scholar
  36. Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, van Tienhoven M, de Bauer LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130(1–4):107–118. CrossRefGoogle Scholar
  37. Emberson L, Ashmore M, Murray F (2003) Air pollution impacts on crops and forests: an introduction. Air Pollution Impacts on Crops 4:3–29. CrossRefGoogle Scholar
  38. Esposito MP, Domingos M (2014) Establishing the redox potential of Tibouchina pulchra (Cham.) Cogn., a native tree species from the Atlantic rain Forest, in the vicinity of an oil refinery in SE Brazil. Environ Sci Pollut Res Int.
  39. Esposito MP, Ferreira ML, Sant’Anna SMR, Domingos M, Souza SR (2009) Relationship between leaf antioxidants and ozone injury in Nicotiana tabacum “bel-W3” under environmental conditions in S??O Paulo, SE - Brazil. Atmos Environ 43(3):619–623. CrossRefGoogle Scholar
  40. Esposito MP, Pedroso ANV, Domingos M (2016) Assessing redox potential of a native tree from the Brazilian Atlantic rainforest: a successful evaluation of oxidative stress associated to a new power generation source of an oil refinery. Sci Total Environ 550(September):861–870. CrossRefGoogle Scholar
  41. Fernandes FF, Cardoso-Gustavson P, Alves ES (2016) Synergism between ozone and light stress: structural responses of polyphenols in a woody Brazilian species. Chemosphere 155:573–582. CrossRefGoogle Scholar
  42. Ferreira ML, Domingos M (2012) Seasonal characterization of antioxidant responses in plants of Ipomoea nil cv. Scarlet O'Hara Brazil. J Biol 72(4):831–837Google Scholar
  43. Figueiredo AMG, Nogueira CA, Saiki M, Milian FM, Domingos M (2007) Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ Pollut (Barking, Essex : 1987) 145(1):279–292. CrossRefGoogle Scholar
  44. Freitas SR, Hawbaker TJ, Metzger JP (2010) Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For Ecol Manag 259(3):410–417. CrossRefGoogle Scholar
  45. Furlan CM (1999) Leaf contents of nitrogen and phenolic compounds and their bearing with the herbivore damage to Tibouchina pulchra Cogn.(Melastomataceae), under the. Braz J Bot 2(1997):317–323 Accessed 23 November 2015CrossRefGoogle Scholar
  46. Furlan CM (2010) Guava flavonoids and the effects of industrial air pollutants. Atmos Pollut Res 1:30–35. CrossRefGoogle Scholar
  47. Furlan CM, Salatino A, Domingos M (2004) Influence of air pollution on leaf chemistry, herbivore feeding and gall frequency on Tibouchina pulchra leaves in Cubatão (Brazil). Biochem Syst Ecol 32:253–263. CrossRefGoogle Scholar
  48. Furlan CM, Moraes RM, Bulbovas P, Domingos M, Salatino, a, & Sanz, M. J. (2007) Psidium guajava “Paluma” (the guava plant) as a new bio-indicator of ozone in the tropics. Environ Pollut (Barking, Essex : 1987) 147(3):691–695.
  49. Giampaoli P, Capelli, N. do V., Tavares, A. R., Fernandes, F. F., Domingos, M., & Alves, E. S. (2015) Anomalous scales of Tillandsia usneoides (L.) L. (Bromeliaceae) exposed in the metropolitan region of Campinas, SP, Brazil as air pollution markers. Hoehnea 42(4):749–757.
  50. Giampaoli P, Wannaz ED, Tavares AR, Domingos M (2016) Suitability of Tillandsia usneoides and Aechmea fasciata for biomonitoring toxic elements under tropical seasonal climate. Chemosphere 149:14–23. CrossRefGoogle Scholar
  51. Kivimäenpää M, Sutinen S, Karlsson PE, Selldén G (2003) Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought. Ann Bot 92(6):779–793. CrossRefGoogle Scholar
  52. Klumpp, a, Klumpp, G., & Domingos, M. (1994). Plants as bioindicators of air pollution at the Serra do mar near the industrial complex of Cubatão, Brazil. Environ Pollut(Barking, Essex : 1987), 85(1), 109–116. Scholar
  53. Klumpp A, Domingos M, Klumpp G (1996a) Assessment of the vegetation risk by fluoride emissions from fertiliser industries at Cubatao, Brazil. Sci Total Environ 192:219–228. CrossRefGoogle Scholar
  54. Klumpp A, Klumpp G, Domingos M, Dasilva MD (1996b) Fluoride impact on native tree species of the Atlantic forest near cubatäo, Brazil. Water Air Soil Pollut 87:51–71CrossRefGoogle Scholar
  55. Klumpp A, Domingos M, Moraes RM, Klumpp G (1998) Effects of complex air pollution on tree species of the Atlantic rain fores near Cubatão, Brazil. Chemosphere 36(4):989–994CrossRefGoogle Scholar
  56. Klumpp A, Domingos M, Klumpp G (2000) Foliar nutrient contents in tree species of the Atlantic rain forest as influenced by air pollution from the industrial complex of cubatão, se-Brazil. Methods 320:315–333Google Scholar
  57. Klumpp A, Domingos M, Klumpp G (2002) Foliar nutrient contents in tree species of the Atlantic rain forest as influenced by air pollution from the industrial complex of Cubatao, SE-Brazil. Water Air Soil Pollut 133(1–4):315–333. CrossRefGoogle Scholar
  58. Klumpp A, Ansel W, Klumpp G (2006a) Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities. Environmental 139:515–522. CrossRefGoogle Scholar
  59. Klumpp A, Ansel W, Klumpp G, Vergne P, Sifakis N, Sanz MJ et al (2006b) Ozone pollution and ozone biomonitoring in European cities part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution. Atmos Environ 40(38):7437–7448. CrossRefGoogle Scholar
  60. Klumpp A, Ansel W, Klumpp G, Breuer J, Vergne P, Sanz MJ, Rasmussen S, Ro-Poulsen H, Ribas Artola À, Peñuelas J, He S, Garrec JP, Calatayud V (2009) Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures. Atmos Environ 43(2):329–339. CrossRefGoogle Scholar
  61. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. CrossRefGoogle Scholar
  62. Lira PK, Tambosi LR, Ewers RM, Metzger JP (2012) Land-use and land-cover change in Atlantic Forest landscapes. For Ecol Manag 278:80–89. CrossRefGoogle Scholar
  63. Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol 21:77–82Google Scholar
  64. Markert B, Wuenschmann S, Fraenzle S, Graciana Figueiredo AM, Ribeiro AP, Wang M (2011) Bioindication of atmospheric trace metals - with special references to megacities. Environ Pollut 159(8–9):1991–1995. CrossRefGoogle Scholar
  65. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 5(9):405–410. CrossRefGoogle Scholar
  66. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. CrossRefGoogle Scholar
  67. Moraes RMDE, Braz W, Delitti C, Antônio J, Vieira P (2000) Respostas de indivíduos jovens de Tibouchina pulchra Cogn. à poluição aérea de Cubatão, SP: fotossíntese líquida, crescimento e química foliar. Revta Brasil. Bot. 23(n.4):443–449. CrossRefGoogle Scholar
  68. Moraes RM, Klumpp A, Furlan CM, Klumpp G, Domingos M, Rinaldi MCS, Modesto IF (2002) Tropical fruit trees as bioindicators of industrial air pollution in Southeast Brazil. Environment International 28:367–374. CrossRefGoogle Scholar
  69. Moraes R, Delitti WB, Moraes, J. a. P. (2003) Gas exchange, growth, and chemical parameters in a native Atlantic forest tree species in polluted areas of Cubatão, Brazil. Ecotoxicol Environ Saf 54(3):339–345.
  70. Moura BB, Alves ES, De Souza SR, Domingos M, Vollenweider P (2014) Ozone phytotoxic potential with regard to fragments of the Atlantic semi-deciduous Forest downwind of Sao Paulo, Brazil. Environ Pollut 192:65–73. CrossRefGoogle Scholar
  71. Moura BB, Alves ES, Marabesi MA, Souza SR, Schaub M, Vollenweider P (2018) Ozone affects leaf physiology and causes injury to foliage of native tree species from the tropical Atlantic forest of southern Brazil. Sci Total Environ 610–611:912–925Google Scholar
  72. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216. CrossRefGoogle Scholar
  73. Nakazato RK, Rinaldi MCS, Domingos M (2015) Will technological modernization for power generation at an oil refinery diminish the risks from air pollution to the Atlantic rainforest in Cubatão, SE Brazil? Environmental pollution (Barking, Essex : 1987), 196, 489–96. CrossRefGoogle Scholar
  74. Nakazato RK, Rinaldi MCS, Domingos M (2016) Tropical trees: are they good alternatives for biomonitoring the atmospheric level of potential toxic elements near to the Brazilian Atlantic rainforest? Ecotoxicol Environ Saf 134:72–79. CrossRefGoogle Scholar
  75. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of Climate1. Biotropica 32(4b):793–810. CrossRefGoogle Scholar
  76. Pedroso, A. N. . (2009). Alterações estruturais , ultraestruturais e histoquímicas em folhas de Nicotiana tabacum „ Bel - W3 ‟ ( Solanaceae ) Alterações estruturais , ultraestruturais e histoquímicas em folhas de Nicotiana tabacum „ Bel - W3 ‟ ( Solanaceae ). Instituto de BotânicaGoogle Scholar
  77. Pedroso ANV, Alves ES (2015) Temporal dynamics of the cellular events in tobacco leaves exposed in São Paulo, Brazil, indicate oxidative stress by ozone. Environ Sci Pollut Res 22(9):6535–6545. CrossRefGoogle Scholar
  78. Pedroso ANV, Bussotti F, Papini A, Tani C, Domingos M (2016) Pollution emissions from a petrochemical complex and other environmental stressors induce structural and ultrastructural damage in leaves of a biosensor tree species from the Atlantic rain Forest. Ecol Indic 67:215–226. CrossRefGoogle Scholar
  79. Pellinen R, Palva T, Kangasjarvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20(3):349–356. CrossRefGoogle Scholar
  80. Peñuelas, J., Ribas, A., Gimeno, B., & Filella, I. (1999). Dependence of ozone biomonitoring on meteorological conditions of different sites in Catalonia (NE Spain). Environmental monitoring and …, 221–224. Accessed 23 November 2015
  81. Perry CT, Divan AM, Raya Rodriguez MT, Lúcia Atz V (2010) Psidium guajava as a bioaccumulator of nickel around an oil refinery, southern Brazil. Ecotoxicol Environ Saf 73(4):647–654. CrossRefGoogle Scholar
  82. Pina JM, Moraes RM (2007) Ozone-induced foliar injury in saplings of Psidium guajava Palumain São Paulo, Brazil. Chemosphere 66(7):1310–1314. CrossRefGoogle Scholar
  83. Pina JM, Meirelles ST, Moraes RM (2017a) Meteorological conditions , ozone concentration and leaf age affect gas exchange in Psidium guajava Paluma. Hoehnea 44(2):236–245.
  84. Pina JM, Souza SR, Meirelles ST, Moraes RM (2017b) Psidium guajava Paluma responses to environmental conditions and ozone concentrations in the urban forest of São Paulo, SE-Brazil. Ecol Indic 77:1–7. CrossRefGoogle Scholar
  85. Popek R, Łukowski A, Bates C, Oleksyn J (2017) Particulate matter, heavy metals and polycyclic aromatic hydrocarbons accumulation on the leaves of Tilia cordata mill. In five polish cities with different level of air pollution. International Journal of Phytoremediation 0.
  86. Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45(1):70–79. CrossRefGoogle Scholar
  87. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181. CrossRefGoogle Scholar
  88. Rezende FM, Furlan CM (2009) Anthocyanins and tannins in ozone-fumigated guava trees. Chemosphere 76(10):1445–1450. CrossRefGoogle Scholar
  89. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining\nforest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153. CrossRefGoogle Scholar
  90. Rinaldi MCS, Domingos M, Dias APL, Esposito JBN, Pagliuso JD (2012) Leaves of Lolium multiflorum “Lema” and tropical tree species as biomonitors of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 79:139–147. CrossRefGoogle Scholar
  91. Rodriguez JH, Wannaz ED, Salazar MJ, Pignata ML, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmos Environ 55:35–42. CrossRefGoogle Scholar
  92. Rodriguez JH, Wannaz ED, Franzaring J, Klumpp A, Fangmeier A, Pignata ML (2015) Biomonitoring of airborne fluoride and polycyclic aromatic hydrocarbons in industrial areas of Córdoba, Argentina, using standardized grass cultures of Lolium multiflorum. Atmos Pollut Res 6(3):444–453. CrossRefGoogle Scholar
  93. Savóia EJL, Domingos M, Guimarães ETG, Brumati F, Saldiva PHN (2009) Biomonitoring genotoxic risks under the urban weather conditions and polluted atmosphere in Santo André, SP, Brazil, through Trad-MCN bioassay. Ecotox Environ Saf 72(1):255–260Google Scholar
  94. Shugart LR, McCarthy JF, Halbrook RS (1992) Biological markers of environmental and ecological contamination: an overview. Risk analysis : an official publication of the Society for Risk Analysis 12:353–360. CrossRefGoogle Scholar
  95. Silva DT, Moraes RM (2013) Physiological responses of the tropical tree Tibouchina pulchra Cogn under the influence of combustion of crude oil and natural gas at an oil refinery. Ecotoxicol Environ Saf 90:69–75. CrossRefGoogle Scholar
  96. Silva DT, Meirelles ST, Moraes RM (2012) Relationship between ozone, meteorological conditions, gas exchange and leaf injury in Nicotiana tabacum bel-W3 in a sub-tropical region. Atmos Environ 60:211–216. CrossRefGoogle Scholar
  97. Silva SF, Meirelles ST, Moraes RM (2013) The guava tree as bioindicator during the process of fuel replacement of an oil refinery. Ecotoxicol Environ Saf 91:39–45. CrossRefGoogle Scholar
  98. Szabo, A. V, Domingos, M., Rinaldi, M. C. S., & Delitti, W. B. C. (2003). Acúmulo foliar de enxofre e suas relações com alterações no crescimento de plantas jovens de Tibouchina pulchra Cogn . (Melastomataceae ) expostas nas proximidades do polo industrial de Cubatão , SP. Rev Bras Bot, 26(3), 379–390.,
  99. Tausz, M., Bytnerowicz, A., Arbaugh, M. J., Wonisch, A., & Grill, D. (2001). Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern CaliforniaGoogle Scholar
  100. Tausz M, Wonisch A, Grill D, Morales D, Soledad Jiménez M (2003) Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation. J Exp Bot 54(387):1505–1510. CrossRefGoogle Scholar
  101. Tresmondi F, Alves ES (2011) Structural changes in Psidium guajava “Paluma” leaves exposed to tropospheric ozone. Acta Botanica Brasilica 25(3):542–548. CrossRefGoogle Scholar
  102. VDI. (1999). Biological measuring techniques for the determination and evaluation of effects of air pollutants on plants. Fundamentals and aims. VDI/DIN Handbuch Reinhaltung der Luft (Vol. 1a)Google Scholar
  103. VDI. (2003). Biological measuring techiniques for the determination and evaluation of effects of air polluttants on plants (biodindication). Source-related measurements of ambient air quality using bioindicators - Vdi 3957/2. VDI/DIN Handbuch Reinhaltung der LuftGoogle Scholar
  104. VDI. (2007). Biological measuring techiniques for the determination and evaluation of effects of air polluttants on plants (biodindication). Source-related measurements of ambient air quality using bioindicators - Vdi 3957/11. VDI/DIN Handbuch Reinhaltung der LuftGoogle Scholar
  105. Vollenweider P, Ottiger M, Günthardt-Goerg MS (2003) Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environ Pollut 124(1):101–118. CrossRefGoogle Scholar
  106. Wujeska A, Bossinger G, Tausz M (2013) Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis. Tree Physiol 33(10):1018–1029. CrossRefGoogle Scholar
  107. Zacchini M, de Agazio M (2004) Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant physiology and biochemistry : PPB / Société française de physiologie végétale 42(5):445–450. CrossRefGoogle Scholar
  108. Zheng G, Pemberton R, Li P (2016) Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides. J Environ Radioact 152:23–27. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ricardo Keiichi Nakazato
    • 1
    Email author
  • Marisia Pannia Esposito
    • 1
  • Poliana Cardoso-Gustavson
    • 2
  • Patrícia Bulbovas
    • 3
  • Andrea Nunes Vaz Pedroso
    • 1
  • Pedro Ivo Lembo Silveira de Assis
    • 4
  • Marisa Domingos
    • 1
  1. 1.Núcleo de Pesquisa em Ecologia, Instituto de BotânicaSão PauloBrazil
  2. 2.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSão Bernardo do CampoBrazil
  3. 3.Universidade GuarulhosGuarulhosBrazil
  4. 4.Instituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations