Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 19499–19509 | Cite as

Bioaccumulation of As, Hg, and Se in tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific: tissue distribution and As speciation

  • Jorge Ruelas-Inzunza
  • Zdenka Šlejkovec
  • Darja Mazej
  • Vesna Fajon
  • Milena Horvat
  • Mauricio Ramos-Osuna
Research Article
  • 117 Downloads

Abstract

With the aim of knowing the distribution of As, Hg, and Se in skipjack (Katsuwonus pelamis, Linnaeus, 1758) and yellowfin tuna (Thunnus albacares, Bonnaterre, 1788) from the Eastern Pacific, elemental concentrations were determined in the muscle and liver; As species were also analyzed in the stomach content. Additionally, health risk for consumers was assessed. For both tunas, levels of As and Se were significantly higher (p < 0.05) in the liver than in the muscle. In K. pelamis, Hg concentrations in the muscle were significantly higher (p < 0.05) than those in the liver. In T. albacares, As, Hg, and Se showed a trend to increase with fish dimensions. Arsenic extractability was better in the muscle than in the liver of both species; in K. pelamis, As species were better extracted than in T. albacares. In both tuna species, the most extractable arsenic was arsenobetaine (AsB) and a minor part was dimethylarsinic acid (DMA). The liver contained mainly AsB with some DMA and arsenocholine (AsC). Hazard indexes (HI) indicated no risk from Hg and Se intake through these tuna species. Considering the individual contribution to the HI, Hg contributed more (80 to 86%) than Se. In the context of health risk, none of the As and Hg values were above the permissible limits; however, two samples of T. albacares (9%) and three samples of K. pelamis (12%) had Se concentrations over the limits. If Hg and Se in the edible portion of tuna are considered under the approach of the HBVSe, tuna consumption is beneficial.

Keywords

Skipjack Yellowfin Muscle Liver Heavy metals Mexico 

Notes

Acknowledgements

Thanks are due to Carlos Suárez-Gutiérrez for the preparation of figures.

Funding information

This work was supported by Consejo Nacional de Ciencia y Tecnología de México and by Programa para el Desarrollo Profesional Docente para el Tipo Superior.

References

  1. Allen GR, Bauchot ML, Bellwood DR, Bianchi G (1995) Peces óseos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental Volumen II. Vertebrados Parte 1. FAO, Rome, pp 1201–1813Google Scholar
  2. Araújo CVM, Cedeño-Macías LA (2016) Heavy metals in yellowfin tuna (Thunnus albacares) and common dolphinfish (Coryphaena hippurus) landed on the Ecuadorian coast. Sci Total Environ 541:149–154.  https://doi.org/10.1016/j.scitotenv.2015.09.090 CrossRefGoogle Scholar
  3. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from lake Macquarie estuary, NSW, Australia. Mar Environ Res 56:471–502.  https://doi.org/10.1016/S0141-1136(03)00028-X CrossRefGoogle Scholar
  4. Bodin N, Lesperance D, Albert R, Hollanda S, Michaud P, Degroote M, Churlaud C, Bustamante P (2017) Trace elements in oceanic pelagic communities in the western Indian Ocean. Chemosphere 174:354–362.  https://doi.org/10.1016/j.chemosphere CrossRefGoogle Scholar
  5. Burger J, Gochfeld M (2005) Heavy metals in commercial fish in New Jersey. Environ Res 99(3):403–412.  https://doi.org/10.1016/j.envres.2005.02.001 CrossRefGoogle Scholar
  6. Burger J, Jeitner C, Gochfeld M (2011) Locational differences in mercury and selenium levels in 19 species of saltwater fish from New Jersey. J Toxicol Environ Health A 74(13):863–874.  https://doi.org/10.1080/15287394.2011.570231 CrossRefGoogle Scholar
  7. Cardoso C, Bandarra N, Lourenço H, Afonso C, Nunes M (2010) Methylmercury risk and EPA+DHA benefits associated with seafood consumption in Europe. Risk Anal 30:827–840.  https://doi.org/10.1111/j.1539-6924.2010.01409.x CrossRefGoogle Scholar
  8. Caumette G, Koch I, Reimer KJ (2012) Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J Environ Monit 14:2841–2853.  https://doi.org/10.1039/c2em30572k CrossRefGoogle Scholar
  9. Collette BB, Nauen CE (1983) An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. In: FAO Fisheries Synopsis, FAO Species Catalogue, Scombrids of the world Food and Agriculture Organization of the United Nations, Rome, pp 1–42, vol. 2, no. 125Google Scholar
  10. Cuvin-Aralar LM, Furness RW (1991) Mercury and selenium interaction: a review. Ecotoxicol Environ Saf 21:348–364.  https://doi.org/10.1016/0147-6513(91)90074-Y CrossRefGoogle Scholar
  11. Endo T, Hisamichi Y, Haraguchi K, Kato Y, Ohta C, Koga N (2008) Hg, Zn and cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki Island, Japan: relationship between metal concentrations and body length. Mar Pollut Bull 56:1774–1780.  https://doi.org/10.1016/j.marpolbul.2008.06.003 CrossRefGoogle Scholar
  12. García-Hernández J, Cadena-Cárdenas L, Betancourt-Lozano M, García-de-la-Parra LM, García-Rico L, Márquez-Farías F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Environ Toxicol Chem 89:507–522.  https://doi.org/10.1080/02772240601165594 CrossRefGoogle Scholar
  13. Gochfeld M (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 56:174–179.  https://doi.org/10.1016/S0147-6513(03)00060-5 CrossRefGoogle Scholar
  14. Honda S, Hylander L, Sakamoto M (2006) Recent advances in evaluation of health effects on mercury with special reference to methylmercury—a minireview. Environ Health Prev Med 11:171–176.  https://doi.org/10.1007/BF02905275 CrossRefGoogle Scholar
  15. Husain A, Kannan K, Chan HM, Laird B, Al-Amiri H, Dashti B, Sultan A, Al-Othman A, Mandekar B (2017) A comparative assessment of arsenic risks and the nutritional benefits of fish consumption in Kuwait: arsenic versus omega 3-fatty acids. Arch Environ Contam Toxicol 72:108–118.  https://doi.org/10.1007/s00244-016-0329-x CrossRefGoogle Scholar
  16. Jinadasa BKKK, Ahmad SBN, Edirisinghe EMRKB, Wicramasinghe I (2015) Mercury content in yellowfin tuna (Thunnus albacares) and swordfish (Xiphias gladius) and estimation of mercury intake. J Food Secur 2:23–26.  https://doi.org/10.12691/jfs-2-1-3 CrossRefGoogle Scholar
  17. Kaneko JJ, Ralston NV (2007) Selenium and mercury in pelagic fish in the central North Pacific near Hawaii. Biol Trace Elem Res 119(3):242–254.  https://doi.org/10.1007/s12011-007-8004-8 CrossRefGoogle Scholar
  18. Kennish MJ (1998) Pollution impacts on marine biotic communities. CRC Press, Boca RatonGoogle Scholar
  19. Kitchell J, Essington T, Boggs C, Schindler D, Walters C (2002) The role of sharks and longline fisheries in a pelagic ecosystem of the Central Pacific. Ecosystems 5:202–216.  https://doi.org/10.1007/s10021-001-0065-5 CrossRefGoogle Scholar
  20. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146(2):548–566.  https://doi.org/10.1016/j.envpol.2006.07.015 CrossRefGoogle Scholar
  21. Kristan U, Kanduč T, Osterc A, Šlejkovec Z, Ramšak A, Stibilj V (2014) Assessment of pollution levels using Mytilus galloprovincialis as a bioindicator species: the case of the Gulf of Trieste. Mar Pollut Bull 89:455–463.  https://doi.org/10.1016/j.marpolbul.2014.09.046 CrossRefGoogle Scholar
  22. Liu LH, Yun ZJ, He B, Jiang GB (2014) Efficient interface for online coupling of capillary electrophoresis with inductively coupled plasma-mass spectrometry and its application in simultaneous speciation analysis of arsenic and selenium. Anal Chem 86:8167–8175.  https://doi.org/10.1021/ac501347d CrossRefGoogle Scholar
  23. Looi LJ, Aris AZ, Haris H, Yusoff FM, Hashim Z (2016) The levels of mercury, methylmercury and selenium and the selenium health benefit value in grey-eel catfish (Plotosus canius) and giant mudskipper (Periophthalmodon schlosseri) from the Strait of Malacca. Chemosphere 152:265–273.  https://doi.org/10.1016/j.chemosphere.2016.02.126 CrossRefGoogle Scholar
  24. Nam SH, Oh HJ, Min HS, Lee JH (2010) A study on the extraction and quantitation of total arsenic and arsenic species in seafood by HPLC-ICP-MS. Microchem J 95:20–24.  https://doi.org/10.1016/j.microc.2009.08.009 CrossRefGoogle Scholar
  25. Nauen C (1983) Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fish Circ 764:1–102Google Scholar
  26. Newman MC, Unger MA (2002) Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, FLGoogle Scholar
  27. Ouédraogo O, Amyot M (2013) Mercury, arsenic and selenium concentrations in water and fish from sub-Saharan semi-arid freshwater reservoirs (Burkina Faso). Sci Total Environ 444:243–254.  https://doi.org/10.1016/j.scitotenv.2012.11.095 CrossRefGoogle Scholar
  28. Ralston NV, Ralston CR, Raymond LJ (2016) Selenium health benefit values: updated criteria for mercury risk assessments. Biol Trace Elem Res 171(2):262–269.  https://doi.org/10.1007/s12011-015-0516-z CrossRefGoogle Scholar
  29. Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515.  https://doi.org/10.1016/j.envint.2008.07.023 CrossRefGoogle Scholar
  30. Ruelas-Inzunza J, Páez-Osuna F, García-Flores D (2010) Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California). Environ Monit Assess 162:251–263.  https://doi.org/10.1007/s00128-011-0189-z CrossRefGoogle Scholar
  31. Ruelas-Inzunza J, Vega-Sánchez B, Ramos-Osuna M, Páez-Osuna F (2011) Trophic transfer and dietary mineral intake of essential elements in Thunnus albacares and Katsuwonus pelamis from the eastern Pacific. Biol Trace Elem Res 143(1):231–239.  https://doi.org/10.1007/s12011-010-8873-0 CrossRefGoogle Scholar
  32. Ruelas-Inzunza J, Soto-Jiménez MF, Ruiz-Fernández AC, Bojórquez-Leyva H, Pérez-Bernal H, Páez-Osuna F (2012) 210Po activity and concentrations of selected trace elements (As, Cd, Cu, Hg, Pb, Zn) in the muscle tissue of tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean. Biol Trace Elem Res 149:371–376.  https://doi.org/10.1007/s12011-012-9450-5 CrossRefGoogle Scholar
  33. Ruelas-Inzunza J, Soto-Jimenez MF, Ruiz-Fernandez AC, Ramos-Osuna M, Mones-Saucedo J, Paez-Osuna F (2014) 210Po, Cd and Pb distribution and biomagnification in the yellowfin tuna Thunnus albacares and skipjack tuna Katsuwonus pelamis from the Eastern Pacific. Mar Pollut Bull 87(1):98–103.  https://doi.org/10.1016/j.marpolbul.2014.08.006 CrossRefGoogle Scholar
  34. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759.  https://doi.org/10.1016/j.envint.2009.01.005 CrossRefGoogle Scholar
  35. Šlejkovec Z, Stajnko A, Falnoga I, Lipej L, Mazej D, Horvat M, Faganeli J (2014) Bioaccumulation of arsenic species in rays from the Northern Adriatic Sea. Int J Mol Sci 15:22073–22091.  https://doi.org/10.3390/ijms151222073 CrossRefGoogle Scholar
  36. Storelli MM, Giacominelli-Stuffler R, Storelli A, Marcotrigiano GO (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50:1004–1007.  https://doi.org/10.1016/j.marpolbul.2005.06.041 CrossRefGoogle Scholar
  37. Teffer AK, Staudinger MD, Taylor DL, Juanes F (2014) Trophic influences on mercury accumulation in top pelagic predators from offshore New England waters of the Northwest Atlantic Ocean. Mar Environ Res 101:124–134.  https://doi.org/10.1016/j.marenvres.2014.09.008 CrossRefGoogle Scholar
  38. Torres P, Rodrigues A, Soares L, Garcia P (2016) Metal concentrations in two commercial tuna species from an active volcanic region in the Mid-Atlantic Ocean. Arch Environ Contam Toxicol 70:341–347.  https://doi.org/10.1007/s00244-015-0249-1 CrossRefGoogle Scholar
  39. US EPA (2000) Handbook for non-cancer health effects evaluation. Environmental Protection Agency, WashingtonGoogle Scholar
  40. Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350(1):28–37.  https://doi.org/10.1016/j.scitotenv.2004.09.044 CrossRefGoogle Scholar
  41. Wang W, Cheng S, Zhang D (2014) Association of inorganic arsenic exposure with liver cancer mortality: a meta-analysis. Environ Res 135:120–125.  https://doi.org/10.1016/j.envres.2014.08.034 CrossRefGoogle Scholar
  42. Wang X, Zuo Z, Zhao C, Zhang Z, Peng G, Cao S, Hu Y, Yu S, Zhong Z, Deng J, Ren Z (2016) Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. Environ Toxicol Pharmacol 47:53–61.  https://doi.org/10.1016/j.etap.2016.09.003 CrossRefGoogle Scholar
  43. Wu GC, Chiang H, Chou YW, Wong ZR, Hsu CC, Chen CY, Yang HY (2010) Phylogeography of yellowfin tuna (Thunnus albacares) in the Western Pacific and the Western Indian Oceans inferred from mitochondrial DNA. Fish Res 105(3):248–253.  https://doi.org/10.1016/j.fishres.2010.03.015 CrossRefGoogle Scholar
  44. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830.  https://doi.org/10.1242/jeb.01730 CrossRefGoogle Scholar
  45. Yang DY, Chen YW, Gunn JM, Belzile M (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92.  https://doi.org/10.1139/A08-001 CrossRefGoogle Scholar
  46. Zeng H, Uthus EO, Combs GF (2005) Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem 99:1269–1274.  https://doi.org/10.1016/j.jinorgbio.2005.03.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Ruelas-Inzunza
    • 1
  • Zdenka Šlejkovec
    • 2
  • Darja Mazej
    • 2
  • Vesna Fajon
    • 2
  • Milena Horvat
    • 2
  • Mauricio Ramos-Osuna
    • 1
  1. 1.Technological Institute of MazatlánMazatlánMexico
  2. 2.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations