Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 20012–20022 | Cite as

Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes

  • Momath Lo
  • Abdou K. D. Diaw
  • Diariatou Gningue-Sall
  • Jean-Jacques Aaron
  • Mehmet A. Oturan
  • Mohamed M. Chehimi
Research Article
  • 65 Downloads

Abstract

Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb2+, Cu2+, and Cd2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu2+, Cd2+, and Pb2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu2+, Cd2+, and Pb2+, respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

Keywords

Flexible ITO Diazonium salts Polypyrrole Electropolymerization Heavy metal ions Electroanalysis 

Notes

Acknowledgements

ML gratefully thanks the Cooperation and Cultural Action Service of the French Embassy in Senegal for a PhD grant.

References

  1. Adarakattia PS, Foster CW, Banks CE, Arun Kumar NS, Malingappa P (2017) Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II),copper(II) and mercury(II) ions: application to environmental samples. Sensors Actuators A 267:517–525CrossRefGoogle Scholar
  2. Afkhami A, Saber-Tehrani M, Bagheri H, Madrakian T (2011) Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina. Microchim Acta 172:125–136CrossRefGoogle Scholar
  3. Aminur Rahman M, Won M-S, Shim Y-B (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75:1123–1129CrossRefGoogle Scholar
  4. Bagheri H, Afkhami A, Saber-Tehrani M, Khoshsafar H (2012) Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta 97:87–95CrossRefGoogle Scholar
  5. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512CrossRefGoogle Scholar
  6. Bhakta AK, Detriche S, Martis P, Mascarenhas RJ, Delhalle J, Mekhalif Z (2017) Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles. J Mater Sci 52:9648–9660CrossRefGoogle Scholar
  7. Buica G-O, Ungureanu E-M, Bucher C, Moutet J-C, Saint-Aman E (2009) Poly(pyrrole-EDTA like) modified electrodes for mercury ions electroanalysis. J Optoelectron Adv Mater 11:1152–1159Google Scholar
  8. Cao C, Zhang Y, Jiang C, Qi M, Liu G (2017) Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl Mater Interfaces 9:5031–5049CrossRefGoogle Scholar
  9. Chen L, Li Z, Meng Y, Zhang P, Su Z, Liu Y, Huang Y, Zhou Y, Xie Q, Yao S (2014) Sensitive square wave anodic stripping voltammetric determination of Cd(II) and Pb(II) ions at Bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode. Sensors Actuators B 191:94–101CrossRefGoogle Scholar
  10. Colozza N, Gravina MF, Amendola L, Rosati M, Akretche DE, Moscone D, Arduini F (2017) A miniaturized bismuth-based sensor to evaluate the marine organism Styela plicata bioremediation capacity toward heavy metal polluted seawater. Sci Total Environ 584–585:692–700CrossRefGoogle Scholar
  11. de Barros A, Ferreira M, Constantino CJL, Bortoleto JRR, Ferreira M (2015) Synergy between polyaniline and OMt clay mineral in Langmuir−Blodgett films for the simultaneous detection of traces of metal ions. ACS Appl Mater Interfaces 7:6828−6834CrossRefGoogle Scholar
  12. Guselnikova O, Hrobonova K, Postnikov P, Lyutakov O, Svorcik V (2017a) Lipophilic gold grating for SERS detection of biological objects. PRO 1:415.  https://doi.org/10.3390/proceedings1040415 CrossRefGoogle Scholar
  13. Guselnikova O, Postnikov P, Erzina M, Kalachyova Y, Švorčík V, Lyutakov O (2017b) Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform. Sensors Actuators B 253:830–838CrossRefGoogle Scholar
  14. Hande PE, Samui AB, Kulkarni PS (2015) Highly selective monitoring of metals by using ion-imprinted polymers. Environ Sci Pollut Res 22:7375–7404CrossRefGoogle Scholar
  15. Heitzmann M, Basaez L, Brovelli F, Bucher C, Limosin D, Pereira E, Rivas BL, Royal G, Saint-Aman E, Moutet J-C (2005) Voltammetric sensing of trace metals at a poly(pyrrole-malonic acid) film modified carbon electrode. Electroanalysis 17:1970–1976CrossRefGoogle Scholar
  16. Hinrichs K, Roodenko K, Rappich J, Chehimi MM, Pinson J (2012) Analytical methods for the characterization of aryl layers. In: Aryl diazonium salts: new coupling agents and surface science, Chehimi MM (Ed.), Wiley-VCH (Weinheim, Germany). Chap. 4, pp 71–101CrossRefGoogle Scholar
  17. Jacques A, Chehimi MM, Poleunis C, Delcorte A, Delhalle J, Mekhalif Z (2016) Grafting of 4-pyrrolyphenyldiazonium in situ generated on NiTi, an adhesion promoter for pyrrole electropolymerisation? Electrochim Acta 211:879–890CrossRefGoogle Scholar
  18. Jiang C, Alam MT, Parker SG, Gooding JJ (2015) Zwitterionic phenyl phosphorylcholine on indium tin oxide: a low-impedance protein-resistant platform for biosensing. Electroanalysis 27:884–889CrossRefGoogle Scholar
  19. Joseph A, Subramanian S, Ramamurthya PC, Sampath S, Kumar RV, Schwandt C (2014) Iminodiacetic acid functionalized polypyrrole modified electrode as Pb(II) sensor: synthesis and DPASV studies. Electrochim Acta 137:557–563CrossRefGoogle Scholar
  20. Le Borgne B, Salaün A-C, Pichon L, Geneste F (2017) Aryl-diazonium functionalized polycrystalline silicon nanoribbons based device for lead detection. PRO 1:479.  https://doi.org/10.3390/proceedings1040479 CrossRefGoogle Scholar
  21. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384CrossRefGoogle Scholar
  22. Leopold K, Foulkes M, Worsfold PJ (2009) Preconcentration techniques for the determination of mercury species in natural waters. Trends Anal Chem 28:426–435CrossRefGoogle Scholar
  23. Li J, Zhang L, Wei G, Zhang Y, Zeng Y (2015) Highly sensitive and doubly orientated selective molecularly imprinted electrochemical sensor for Cu(II). Biosens Bioelectron 69:316–320CrossRefGoogle Scholar
  24. Lo M, Diaw AKD, Gningue-Sall D, Aaron J-J, Oturan MA, Chehimi MM (2017) The role of diazonium interface chemistry in the design of high performance polypyrrole-coated flexible ITO sensing electrodes. Electrochem Commun 77:14–18CrossRefGoogle Scholar
  25. Mahouche Chergui S, Abbas N, Matrab T, Turmine M, Bon Nguyen E, Losno R, Pinson J, Chehimi MM (2010) Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization. Carbon 48:2106–2111CrossRefGoogle Scholar
  26. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM (2011) Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40:4143–4166CrossRefGoogle Scholar
  27. Manzoori JL, Sorouraddin MH, Haji Shabani AM (1998) Determination of mercury by cold vapour atomic absorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina. J Anal At Spectrom 13:305–308CrossRefGoogle Scholar
  28. Mazloum-Ardakani M, Amini MK, Dehghan M, Kordi E, Sheikh-Mohseni MA (2012) Nanomolar determination of Pb(II) ions using a selective templated electrode. J Serb Chem Soc 77:899–910CrossRefGoogle Scholar
  29. Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Functionalization of nanomaterials with aryldiazonium salts. Adv Colloid Interf Sci 225:16–36CrossRefGoogle Scholar
  30. Msaadi R, Gharsalli A, Mahouche-Chergui S, Nowak S, Salmi H, Carbonnier B, Ammar S, Chehimi MM (2016) Reactive and functional clay through UV-triggered thiol-ene interfacial click reaction. Surf Interface Anal 48:532–537CrossRefGoogle Scholar
  31. NIST X-ray photoelectron spectroscopy database, NIST Standard Reference Database 20, version 4.1. Data compiled and evaluated by Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ, https://srdata.nist.gov/xps/Default.aspx. (Last accessed 9 November 2017)
  32. Pourreza N, Parham H, Kiasat AR, Ghanemi K, Abdollahi N (2009) Solid phase extraction of mercury on sulfur loaded with N-(2-chloro benzoyl)-N′-phenylthiourea as a new adsorbent and determination by cold vapor atomic absorption spectrometry. Talanta 78:1293–1297CrossRefGoogle Scholar
  33. Seck SM, Charvet S, Fall M, Baudrin E, Geneste F, Lejeune M, Benlahsen M (2015) Functionalization of amorphous nitrogenated carbon thin film electrodes for improved detection of cadmium vs. copper cations. J Electroanal Chem 738:154–161CrossRefGoogle Scholar
  34. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharm 43:246–253CrossRefGoogle Scholar
  35. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291CrossRefGoogle Scholar
  36. Wanekaya A, Sadik OA (2002) Electrochemical detection of lead using overoxidized polypyrrole films. J Electroanal Chem 537:135–143CrossRefGoogle Scholar
  37. Wang X, Cai W, Liu S, Wang G, Wu Z, Zhao H (2013) ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions. Colloids Surf A Physicochem Eng Asp 422:199–205CrossRefGoogle Scholar
  38. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951CrossRefGoogle Scholar
  39. Zejli H, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Temsamani KR (2007) Stripping voltammetry of silver ions at polythiophene-modified platinum electrodes. Talanta 71:1594–1598CrossRefGoogle Scholar
  40. Zhao D, Guo X, Wang T, Alvarez N, Vesselin NS, Heineman WR (2014) Simultaneous detection of heavy metals by anodic stripping voltammetry using carbon nanotube thread. Electroanalysis 26:488 496Google Scholar
  41. Zinoubi K, Majdoub H, Barhoumi H, Boufi S, Jaffrezic-Renault N (2017) Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode. J Electroanal Chem 799:70–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculté des SciencesUniversité Cheikh Anta DiopDakarSenegal
  2. 2.Laboratoire Géomatériaux et EnvironnementUniversité Paris-EstMarne-la-Vallée cedex 2France
  3. 3.Université Paris Est, CNRS, ICMPE (UMR 7182)ThiaisFrance

Personalised recommendations