Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 20, pp 19953–19961 | Cite as

Effect of calcium lignosulfonate supplementation on metabolic profiles of confined lambs

  • Maria Luiza França Silva
  • Gleidson Giordano Pinto de Carvalho
  • Robério Rodrigues Silva
  • Tamires da Silva Magalhães
  • Pablo Teixeira Viana
  • Luana Marta de Almeida Rufino
  • Aracele Vieira Santos
  • José Augusto Gomes Azevedo
  • José Esler Freitas Júnior
  • Camila de Oliveira Nascimento
  • Carlos Emanuel Eiras
Research Article

Abstract

This study aimed to evaluate the effect of calcium lignosulfonate associated with whole cottonseed in high-concentrate diets for sheep. Eight Dorper crossbred sheep with an average live weight of 42.5 ± 1.70 kg were assigned to two 4 × 4 Latin squares. The following experimental diets were evaluated: control diet (without calcium lignosulfonate) and diets with inclusion of 50, 100, and 150 g of calcium lignosulfonate/kg fresh matter. Diets were composed of soybean meal, ground corn, and whole cottonseed. Feed intake, digestibility, metabolic characteristics, and feeding behavior were evaluated. The intake of nutritional components did not show significant differences as a function of the lignosulfonate levels in the diet; however, the increase in calcium lignosulfonate levels linearly decreased the dry matter digestibility. Rumen ammonia nitrogen concentrations decreased linearly as the lignosulfonate levels in the diets were increased. There was no effect of lignosulfonate levels on blood parameters or feeding behavior of the animals. The use of lignosulfonate associated with cottonseed decreases the digestibility of dry matter and the concentration of rumen ammonia nitrogen, but does not change the intake of nutritional components, the blood parameters, or the feeding behavior of sheep.

Keywords

Methane Rumen biohydrogenation Volatile fatty acids 

Notes

Funding information

For this project (Proc. 0019/2013), this study received financial support from the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bürger PJ, Pereira JC, Queiroz AC, Silva JFC, Valadares Filho SC, Cecon PR, Casali ADP (2000) Ingestive behavior in Holstein calves fed diets with different concentrate levels. R Bras Zootec 29:236–242CrossRefGoogle Scholar
  2. Capper JL, Bauman DE (2013) The role of productivity in improving the environmental sustainability of ruminant production systems. Annu Rev Anim Biosci 1:469–489CrossRefGoogle Scholar
  3. Carvalho GGP, Pires AJV, Silva HGO, Veloso CM, Silva RR (2007) Methodological aspects of chewing activity of dairy goats fed cocoa meal or palm cake. R Bras Zootec 36:103–110CrossRefGoogle Scholar
  4. Chen G, Russell JB (1989) More monensin-sensitive, ammonia producing bacteria from the rumen. Appl Environ Microbiol 55:1052–1057Google Scholar
  5. Dardillat C, Baumont R (1992) Physical characteristic of reticular content in the bovine and consequences on reticular outflow. Reprod Nutr Dev 32:21–36CrossRefGoogle Scholar
  6. Detmann E, Souza MA, Valadares Filho SC, Queiroz AC, Berchielli TT, Saliba EOS, Cabral LS, Pina DS, Ladeira MM, Azevedo JAG (2012) Métodos para análise de alimentos-INCT—Ciência Animal, 1st edn. UFV Press, ViçosaGoogle Scholar
  7. Detmann E, Valadares Filho SC (2010) On the estimation of non-fibrous carbohydrates in feeds and diets. Arq Bras Med Vet Zootec 62:980–984CrossRefGoogle Scholar
  8. Eustáquio Filho A, Carvalho GGP, Pires AJV, Silva RR, Santos PEF, Murta RM, Pereira FN, Carvalho BMA, Maranhão CMA, Rufino LMA, Santos SA, Pina DS (2016) Intake and ingestive behavior in lambs fed low-digestibility forages. Trop Anim Health Prod 48:1–7CrossRefGoogle Scholar
  9. Harvatine DI, Winkler JE, Devant-Guille M, Firkins JL, St-Pierre NR, Oldick BS, Eastridge ML (2002) Whole linted cottonseed as a forage substitute: fiber effectiveness and digestion kinetics. J Dairy Sci 85:1988–1999CrossRefGoogle Scholar
  10. Jenkins TC (1993) Lipid metabolism in the rumen. J Dairy Sci 76:3851–3863CrossRefGoogle Scholar
  11. Jenkins TC, Wallace RJ, Moate PJ, Mosley E (2008) Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 86:397–412CrossRefGoogle Scholar
  12. Kaneko JJ, Harvey JW, Bruss ML (1997) Clinical Biochemistry of Domestic Animals, 5th edn. Academic Press, San DiegoGoogle Scholar
  13. Kiani A, Alstrup L, Nielsen MO (2015) Differential metabolic and endocrine adaptations in llamas, sheep, and goats fed high-and low-protein grass-based diets. Domest Anim Endocrinol 53:9–16CrossRefGoogle Scholar
  14. Kononoff PJ, Heinrichs AJ, Buckmaster DR (2003) Modification of the Penn State forage and total mixed ration particle separator and the effects of moisture content on its measurements. J Dairy Sci 86:1858–1863CrossRefGoogle Scholar
  15. Kumar V, Puniya M, Roy D (2013) Ameliorative effect of lignosulfonate on monocrotophos intoxicated lactating goats. Small Rumin Res 113:461–466CrossRefGoogle Scholar
  16. Marchi FE, Figueiroa FJF, Santos GTD, Santos WBRD, Kazama DCDS, Branco AF, Damasceno JC (2013) Intake, digestibility and ruminal parameters of dairy cows fed pelleted diets and treated with lignosulfonate-containing sunflower seeds. R Bras Zootec 42:656–663CrossRefGoogle Scholar
  17. Mertens DR (1994) Regulation of forage intake. Forage quality, evaluation, and utilization. American Society of Agronomy, Madison, pp 450–493Google Scholar
  18. Moallem U, Katz M, Arieli A, Lehrer H (2007) Effects of peripartum propylene glycol or fats differing in fatty acid profiles on feed intake, production, and plasma metabolites in dairy cows. J Dairy Sci 90:3846–3856CrossRefGoogle Scholar
  19. Moss AR, Jouany JP, Newbold J (2000). Methane production by ruminants: its contribution to global warming. Ann Zootec 49:231–253Google Scholar
  20. NRC (2007) Nutrient requirements of small ruminants. National Academy Press, Washington, DCGoogle Scholar
  21. Neves CA, Santos GTD, Matsushita M, Alves CM, Oliveira RL, Branco AF, Silva DC, Furlan AC, Petit HV (2007) Intake, digestibility, milk production, and milk composition of Holstein cows fed extruded soybeans treated with lignosulfonate. Anim Feed Sci Technol 134:32–44CrossRefGoogle Scholar
  22. Neves CA, Santos WBR, Santos GTD, Silva DC, Santos FS, Visentainer JV, Petit HV (2009) Production performance and milk composition of dairy cows fed extruded canola seeds treated with or without lignosulfonate. Anim Feed Sci Technol 154:83–89CrossRefGoogle Scholar
  23. Nicory IMC, Carvalho GGP, Ribeiro OL, Silva RR, Tosto MSL, Costa-Lopes LS, Souza FNC, Nascimento OC (2015) Ingestive behavior of lambs fed diets containing castor seed meal. Trop Anim Health Prod 47:939–944CrossRefGoogle Scholar
  24. Palmquist DL (1991) Influence of source and amount of dietary fat on digestibility in lactating cows. J Dairy Sci 74:1354–1360CrossRefGoogle Scholar
  25. Palmquist D (2007) Biohydrogenation then and now. Eur J Lipid Sci Technol 109:737–739CrossRefGoogle Scholar
  26. Petit HV, Tremblay GF, Turcotte M, Audy R (1999) Degradability and digestibility of full-fat soybeans treated with different sugar and heat combinations. Can J Anim Sci 79:213–220CrossRefGoogle Scholar
  27. Polli VA, Restle J, Senna DB, Almeida SRS (1996) Aspects of rumination of cattle and buffaloes in feedlot. R Bras Zootec 25:987–993Google Scholar
  28. Rufino Junior JR, Carvalho DMG, Souza JG, Silva Cabral L, Silva JJ, Ribeiro MD, Arnoldo TLQ, Soares JQ (2015) Caroço de algodão em dietas sem volumoso para cordeiros confinados. Semin: Ciênc Agrár 36:2727–2738Google Scholar
  29. Santos WBR, Santos GTD, Silva-Kazama DC, Cecato U, Marchi FE, Visentainer JV, Petit HV (2011) Production performance and milk composition of grazing dairy cows fed pelleted or non-pelleted concentrates treated with or without lignosulfonate and containing ground sunflower seeds. Anim Feed Sci Technol 169:167–175CrossRefGoogle Scholar
  30. Santos WBR, Santos GTD, Neves CA, Marchi FE, Silva-Kazama DC, Ítavo LCV, Damasceno JC, Petit HV (2012) Rumen fermentation and nutrient flow to the omasum in Holstein cows fed extruded canola seeds treated with or without lignosulfonate. R Bras Zootec 41:1747–1755CrossRefGoogle Scholar
  31. Valadares Filho SC, Rocha Junior VR, Cappelli ER (2002) Tabelas brasileiras de composição de alimentos para bovinosCQBAL 2.0, 1st edn. UFV Press, ViçosaGoogle Scholar
  32. Van Soest PJ (1994) Nutritional ecology of the ruminant, 2th edn. Comstock publishing, IthacaGoogle Scholar
  33. Weiss W (1999) Energy prediction equations for ruminant. In: Cornell University (ed). Cornell nutrition conference for feed manufacturers Ithaca, NY, USA, pp 176–185Google Scholar
  34. Wright CF, Von Keyserlingk MA, Swift ML, Fisher LJ, Shelford JA, Dinn NE (2005) Heat- and lignosulfonate-treated canola meal as a source of ruminal undegradable protein for lactating dairy cows. J Dairy Sci 88:238–243CrossRefGoogle Scholar
  35. Yahaghi M, Liang JB, Balcells J, Valizadeh R, Jahromi MF, Alimon R, Ho YW (2013) Effect of substituting barley with sorghum on starch digestion, rumen microbial yield and growth in Iranian Baluchi lambs fed high concentrate diets. Anim Feed Sci Technol 183:96–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Luiza França Silva
    • 1
  • Gleidson Giordano Pinto de Carvalho
    • 2
  • Robério Rodrigues Silva
    • 1
  • Tamires da Silva Magalhães
    • 2
  • Pablo Teixeira Viana
    • 1
  • Luana Marta de Almeida Rufino
    • 3
  • Aracele Vieira Santos
    • 2
  • José Augusto Gomes Azevedo
    • 4
  • José Esler Freitas Júnior
    • 2
  • Camila de Oliveira Nascimento
    • 2
  • Carlos Emanuel Eiras
    • 2
  1. 1.State University of Southeast BahiaItapetingaBrazil
  2. 2.Federal University of BahiaSalvadorBrazil
  3. 3.Federal University of ParáCastanhalBrazil
  4. 4.State University of Santa CruzIlhéusBrazil

Personalised recommendations