Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 19, pp 18894–18913 | Cite as

Design of Ag/ and Pt/TiO2-SiO2 nanomaterials for the photocatalytic degradation of phenol under solar irradiation

  • Juan Matos
  • Biviana Llano
  • Ricmary Montaña
  • Po S. Poon
  • Maria C. Hidalgo
Research Article

Abstract

The design of hybrid mesoporous TiO2-SiO2 (TS1) materials decorated with Ag and Pt nanoparticles was performed. The photocatalytic degradation of phenol under artificial solar irradiation was studied and the activity and selectivity of the intermediate products were verified. TiO2-SiO2 was prepared by sol-gel method while Ag- and Pt-based photocatalysts (TS1-Ag and TS1-Pt) were prepared by photodeposition of the noble metals on TS1. Two series of photocatalysts were prepared varying Ag and Pt contents (0.5 and 1.0 wt%). An increase in the photocatalytic activity up to two and five times higher than TS1 was found on TS1-Ag-1.0 and TS1-Pt-1.0, respectively. Changes in the intermediate products were detected on Ag- and Pt-based photocatalysts with an increase in the catechol formation up to 3.3 and 6.6 times higher than that observed on TS1, respectively. A two-parallel reaction mechanism for the hydroquinone and catechol formation is proposed. A linear correlation between the photocatalytic activity and the surface concentration of noble metals was found indicating that the electron affinity of noble metals is the driven force for both the increase in the photoactivity and for the remarkable changes in the selectivity of products.

Keywords

TiO2-SiO2 Noble metals Phenol Photocatalysis Solar irradiation Selectivity 

Notes

Funding information

Juan Matos thanks to Basal Chilean Program PFB-27, FAE-829, and CORFO-15IPPID-45676 project for the financial support. Biviana Llano thanks to the “Universidad de Antioquia, Comité para el Desarrollo de la Investigación—CODI” and to the “Departamento Administrativo de Ciencia, Tecnología e Innovación (Colciencias)-Programa de Doctorados Nacionales 2004” for the financial support.

Supplementary material

11356_2018_2102_MOESM1_ESM.docx (875 kb)
ESM 1 (DOCX 899 kb)

References

  1. Amruta S, Vidya SK (2016) Solar light mediated photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles in batch and fluidized bed reactor. Sol Energy 127:67–78CrossRefGoogle Scholar
  2. Bandosz TJ, Matos J, Seredych M, Islam MSZ, Alfano R (2012) Photoactivity of S-doped nanoporous activated carbons: a new perspective for harvesting solar energy on carbon-based semiconductors. Appl Catal A Gen 445-446:159–165CrossRefGoogle Scholar
  3. Bandosz TJ, Seredych M, Rodríguez-Castellón E, Chen Y, Daemen LL, Ramírez-Cuesta AJ (2016) Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions. Carbon 96:856–863CrossRefGoogle Scholar
  4. Barker PE, Hatt BW (1981) Dissolution of siliceous chromatographic packings in various aqueous eluents. J Chromatogr A 206:27–34CrossRefGoogle Scholar
  5. Bera S, Lee JE, Rawal SB, Lee WI (2016) Size-dependant plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2. Appl Catal B Environ 199:55–63CrossRefGoogle Scholar
  6. Budroni G, Corma A, García H, Primo A (2007) Pd nanoparticles embedded in sponge-like porous silica as a Suzuki–Miyaura catalyst: similarities and differences with homogeneous catalysts. J Catal 251:345–353CrossRefGoogle Scholar
  7. Chaibi W, Peláez RJ, Blondel C, Drag C, Delsart C (2010) Effect of a magnetic field in photodetachment microscopy. Eur Phys J D58:29–37Google Scholar
  8. Chauhan R, Kumar A, Chaudhary RP (2012) Structural and optical characterization of Ag-doped TiO2 nanoparticles prepared by a sol-gel method. Res Chem Intermed 38:1443–1453CrossRefGoogle Scholar
  9. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  10. Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532CrossRefGoogle Scholar
  11. Cordero T, Duchamp C, Chovelon JM, Ferronato C, Matos J (2007a) Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J Photochem Photobiol A Chem 191:122–131CrossRefGoogle Scholar
  12. Cordero T, Chovelon JM, Duchamp C, Ferronato C, Matos J (2007b) Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Appl Catal B Environ 73:227–235CrossRefGoogle Scholar
  13. Dai H, Sun Y, Ni P, Lu W, Jiang S, Wang Y, Li Z (2017) Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. Sensors Actuators B Chem 242:260–268CrossRefGoogle Scholar
  14. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefGoogle Scholar
  15. Delerue C, Allan G, Reynaud C, Guillois O, Ledoux G, Huisken F (2006) Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals. Phys Rev B 73:235318-1–235318-4CrossRefGoogle Scholar
  16. Dette C, Perez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538CrossRefGoogle Scholar
  17. Dvoranová D, Brezová V, Mazúr M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B Environ 37:91–105CrossRefGoogle Scholar
  18. Ebitani K, Konno H, Tanaka T, Hattori H (1992) In-situ XPS study of zirconium oxide promoted by platinum and sulfate ion. J Catalysis 135:60–67CrossRefGoogle Scholar
  19. Feng Z, Yu J, Sun D, Wang T (2016) Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance. J Colloid Interface Sci 480:184–190CrossRefGoogle Scholar
  20. Gao X, Wachs I (1999) Titania-silica as catalyst: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254CrossRefGoogle Scholar
  21. Ghorbani-Shahna F, Bahrami A, Alimohammadi I, Yarahmadi R, Jaleh B, Gandomi M, Ebrahimi H, Ad-Din Abedi K (2017) Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and byproducts reduction. J Hazard Mater 324:544–553CrossRefGoogle Scholar
  22. Gómez CM, Angel GD, Ramos-Ramírez E, Rangel-Vázquez I, González F, Arrieta A, Vázquez-Zavala A, Bonilla-Sánchez A, Sánchez Cantú M (2016) Alumina coating with TiO2 and its effect on catalytic photodegradation of phenol and p-cresol. J Chem Technol Biotchnol 91:2211–2220CrossRefGoogle Scholar
  23. Gomis-Berenguer A, Iniesta J, Moro A, Maurino V, Lima JC, Ania CO (2016) Boosting visible light conversion in the confined pore space of nanoporous carbons. Carbon 96:98–104CrossRefGoogle Scholar
  24. Grabowska E, Diak M, Klimczuk T, Lisowski W, Zaleska-Medynska A (2017) Novel decahedral TiO2 photocatalysts modified with Ru or Rh NPs: insight into the mechanism. Mol Catal 434:154–166CrossRefGoogle Scholar
  25. Ilin RN, Sakharov VI, Serenkov IT (1987) Study of titanium negative ion using method of electron detachment by an electric field. Opt Spectrosc 62:578Google Scholar
  26. Inagaki M, Nonaka M, Kojin F, Tsumura T, Toyoda M (2006) Cyclic performance of carbon-coated TiO2 for photocatalytic activity of methylene blue decomposition. Environ Technol 27:521–528CrossRefGoogle Scholar
  27. Jung KY, Park SB (1999) Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. J Photochem Photobiol A Chem 127:117–122CrossRefGoogle Scholar
  28. Karimi-Shamsabadi M, Nezamzadeh-Ejhieh A (2016) Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J Mol Catal A Chem 418:103–114CrossRefGoogle Scholar
  29. Koci K, Mateju K, Obalova L, Krejcikova S, Lacny Z, Placha D, Capek L, Hospodkova A, Solcova O (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B Environ 96:239–244CrossRefGoogle Scholar
  30. Kosuge K, Sato T, Kikukawa N, Takemori M (2004) Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater 16:899–905CrossRefGoogle Scholar
  31. Kruk M, Jaroniec M (2000) Characterization of the porous structure of SBA-15. Chem Mater 12:1961–1968CrossRefGoogle Scholar
  32. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219CrossRefGoogle Scholar
  33. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B Environ 32:215–227CrossRefGoogle Scholar
  34. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  35. Llano B, Restrepo G, Marín JM, Navío JA, Hidalgo MC (2010) Characterization and photocatalytic properties of titania-silica mixed oxides doped with Ag and Pt. Appl Catal A Gen 387:135–140CrossRefGoogle Scholar
  36. Llano B, Hidalgo MC, Rios LA, Navio JA (2014) Effect of the type of acid used in the synthesis of titania-silica mixed oxides on their photocatalytic properties. Appl Catal B Environ 150-151:389–395CrossRefGoogle Scholar
  37. Marinho BA, Cristóvão RO, Djellabi R, Loureiro JM, Boaventura RAR, Vilar VJP (2017) Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl Catal B Environ 203:18–30CrossRefGoogle Scholar
  38. Matos J, Corma A (2011) Selective phenol hydrogenation in aqueous phase on Pd-based catalysts supported on hybrid TiO2-carbon materials. Appl Catal A Gen 404:103–112CrossRefGoogle Scholar
  39. Matos J, Laine J, Herrmann JM (1998) Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl Catal B Environ 18:281–291CrossRefGoogle Scholar
  40. Matos J, Laine J, Herrmann JM (2001) Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated Titania. J Catal 200:10–20CrossRefGoogle Scholar
  41. Matos J, García A, Park SE (2011) Ti-containing mesoporous silica for methylene blue photodegradation. Appl Catal A Gen 393:359–366CrossRefGoogle Scholar
  42. Matos J, Marino T, García A, Molinari R, García H (2012) Hydrogen photoproduction under visible irradiation of Au-TiO2/activated carbon. Appl Catal A Gen 417–418:263–272CrossRefGoogle Scholar
  43. Matos J, Fierro V, Montaña R, Rivero E, Martinez de Yuso A, Zhao W, Celzard A (2016) High surface area microporous carbons as photoreactors for the catalytic photodegradation of methylene blue under UV-vis irradiation. Appl Catal A Gen 517:1–11Google Scholar
  44. Meroni D, Lo Presti L, Di Liberto G, Ceotto M, Acres RG, Prince KC, Bellani R, Soliveri G, Ardizzone S (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study. J Phys Chem C Nanomater Interfaces 121:430–440CrossRefGoogle Scholar
  45. Metwally K, Mensah S, Baffou G (2015) Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J Phys Chem C 119:28586–28596CrossRefGoogle Scholar
  46. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  47. Quiñones-Jurado ZV, Waldo-Mendoza MA, Aguilera-Bandín HM, Villabona-Leal EG, Cervantes-González E, Pérez E (2014) Silver nanoparticles supported on TiO2 and their antibacterial properties: effect of surface confinement and nonexistence of plasmon resonance. Mater Sci Appl 5:895–903Google Scholar
  48. Rivadulla JF, Vergara MC, Blanco MC, López-Quintela MA, Rivas J (1997) Optical properties of platinum particles synthesized in microemulsions. J Phys Chem B 101:8997–9004CrossRefGoogle Scholar
  49. Salehi-Abar P, Kazempour A (2017) Effect of N and F doping on the electronic properties of rutile TiO2 quantum dot solar cells: a first principle study. Chem Phys Lett 673:56–61CrossRefGoogle Scholar
  50. Sastre G, Corma A (2009) The confinement effect in zeolites. J Mol Catal A Chem 305:3–7CrossRefGoogle Scholar
  51. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat Nanotechnol 3:106–111CrossRefGoogle Scholar
  52. Schoenhalz AL, Arantes JT, Fazzio A, Dalpian GM (2010) Surface and quantum confinement effects in ZnO nanocrystals. J Phys Chem C 114:18293–18297CrossRefGoogle Scholar
  53. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles-size quantization or direct transitions in this indirect semiconductor. J Phys Chem 99:16646–16654CrossRefGoogle Scholar
  54. Shi B, Shin YK, Hassanali AA, Singer SJ (2015) DNA binding to the silica surface. J Phys Chem B 119:11030–11040CrossRefGoogle Scholar
  55. Shinde Y, Wadhai S, Ponkshe A, Kapoor S, Thakur P (2018) Decoration of Pt on the metal free RGO-TiO2 composite photocatalysts for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker. Int J Hydrog Energy 43:4015–4027CrossRefGoogle Scholar
  56. Taing J, Cheng MH, Hemminger JC (2011) Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG. ACS Nano 5:6325–6333CrossRefGoogle Scholar
  57. Tandon SP, Gupta JP (1970) Measurement of forbidden energy gap of semiconductors by diffuse reflectance technique. Phys Status Solidi B 38:363–367CrossRefGoogle Scholar
  58. Tang H, Chang S, Wu K, Tang G, Fu Y, Liu Q, Yang X (2016) Band gap and morphology engineering of TiO2 by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis. RSC Adv 6:63117–63130CrossRefGoogle Scholar
  59. Tasbihi M, Stangar SL, Černigoj U, Jirkovsky J, Bakardjieva S, Novak N (2011) Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catal Today 161:181–188CrossRefGoogle Scholar
  60. Torimoto T, Itoh S, Kuwabata S, Yoneyama H (1996) Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide. Environ Sci Technol 30:1275–1281CrossRefGoogle Scholar
  61. Velasco LF, Lima JC, Ania CO (2014a) Visible-light photochemical activity of nanoporous carbons under monochromatic light. Angew Chem Int Ed 53:4146–4148CrossRefGoogle Scholar
  62. Velasco LF, Carmona RJ, Matos J, Ania CO (2014b) Performance of activated carbons in consecutive phenol photooxidation cycles. Carbon 73:206–215CrossRefGoogle Scholar
  63. Wang W, Gomez Silva C, Faria JL (2007) Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B Environ 70:470–478CrossRefGoogle Scholar
  64. Wang Y, Zhou G, Li T, Qiao W, Li Y (2009) Catalytic activity of mesoporous TiO2−xNx photocatalysts for the decomposition of methyl orange under solar simulated light. Catal Commun 10:412–415CrossRefGoogle Scholar
  65. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619CrossRefGoogle Scholar
  66. World Health Organization report (2017) 27 June. http://www.who.int/gho/publications/es/
  67. Xin B, Jing L, Ren Z, Wang B, Fu H (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809CrossRefGoogle Scholar
  68. Yang CS, Wang YJ, Shih MS, Chang YT, Hon CC (2009) Photocatalytic performance of alumina-incorporated titania composite nanoparticles: surface area and crystallinity. Appl Catal A Gen 364:182–190CrossRefGoogle Scholar
  69. Yoon JW, Sasaki T, Koshizaki N (2005) Dispersion of nanosized noble metals in TiO2 matrix and their photoeletrode properties. Thin Solid Films 483:276–282CrossRefGoogle Scholar
  70. Zelekew OA, Kuo DH, Yassin JM, Ahmed KE, Abdullah H (2017) Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance. Appl Surf Sci 410:454–463CrossRefGoogle Scholar
  71. Zhang F, Chen J, Zhang X, Gao W, Jin R, Guan N, Li Y (2004) Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition. Langmuir 20:9329–9334CrossRefGoogle Scholar
  72. Zhang X, Yang H, Zhang F, Chan KY (2007) Preparation and characterization of Pt-TiO2-SiO2 mesoporous materials and visible-light photocatalytic performance. Mater Lett 61:11–12Google Scholar
  73. Zhao ZL, Wang Q, Zhang LY, An HM, Li Z, Li CM (2018) Galvanic exchange-formed ultra-low Pt loading on synthesized unique porous Ag-Pd nanotubes for increased active sites toward oxygen reduction reaction. Electrochim Acta 263:209–216CrossRefGoogle Scholar
  74. Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z (2015) Silica–titania composite aerogel photocatalysts by chemical liquid deposition of Titania onto nanoporous silica scaffolds. Appl Mater Interfaces 7:5400–5409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hybrid and Carbon Materials Group, Bioenergy Department, Technological Development Unit (UDT)University of ConcepcionCoronelChile
  2. 2.Grupo Procesos Químicos Industriales, Facultad de IngenieríaUniversidad de Antioquia UdeAMedellínColombia
  3. 3.Instituto de Ciencia de Materiales de Sevilla (ICMS)Centro Mixto CSIC-Universidad de SevillaSevillaSpain

Personalised recommendations