Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22629–22640 | Cite as

Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China

  • Yusan Turap
  • Dilinuer TalifuEmail author
  • Xinming Wang
  • Tuergong Aierken
  • Suwubinuer Rekefu
  • Hao Shen
  • Xiang Ding
  • Mailikezhati Maihemuti
  • Yalkunjan Tursun
  • Wei Liu
Research Article


Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their potential as human carcinogens. Thus, determining the characteristics, potential source, and examining the oxidative capacity of PAHs to protect human health is essential. This study investigated the PM2.5-bound PAHs at Dushanzi, a large petrochemical region in Xinjiang as well as northwest China. A total of 33 PM2.5 samples with 13 PAHs, together with molecular tracers (levoglucosan, and element carbon), were analyzed during the non-heating and heating periods. The results showed that the PM2.5 concentrations were 70.22 ± 22.30 and 95.47 ± 61.73 μg/m3, while that of total PAHs were 4.07 ± 2.03 and 60.33 ± 30.80 ng/m3 in sampling period, respectively. The fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the most abundant (top five) PAHs, accounting for 71.74 and 72.80% of total PAH mass during non-heating and heating periods. The BaP equivalent (BaPeq) concentration exceeded 1 ng/m3 as recommended by National Ambient Air Quality Standards during heating period. The diagnostic ratios and positive matrix factorization indicated that oil industry, biomass burning, coal combustion, and vehicle emissions are the primary sources. The coal combustion remarkably increased during heating period. The plasmid scission assay (PSA) results showed that higher DNA damage rate was observed during heating period. PAHs in PM2.5 such as Chr, BaP, and IcdP were found to have significantly positive correlations with the plasmid DNA damage rates. Additionally, the relationship among BaPeq and DNA damage rate suggested that synergistic reaction may modify the toxicity of PAHs.


PM2.5 Polycyclic aromatic hydrocarbons Source apportion Oxidative capacity Plasmid scission assay 


Funding information

This work was supported by the National Science Foundation of China (No. 41465007) and the Open Fund of State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science (SKLOG-2016201624).

Supplementary material

11356_2018_2082_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1140 kb)


  1. Bandowe BAM, Meusel H, Huang R-j, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci. Total Environ 473-474:77–87CrossRefGoogle Scholar
  2. Biache C, Mansuy-Huault L, Faure P (2014) Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: implications for the source identifications. J Hazard Mater 267:31–39CrossRefGoogle Scholar
  3. Burczynski ME, Penning TM (2000) Genotoxic polycyclic aromatic hydrocarbon ortho-quinones generated by aldo-keto reductases induce CYP1A1 via nuclear translocation of the aryl hydrocarbon receptor. Cancer Res 60:908Google Scholar
  4. Cerezo MI, Agustí S (2015) PAHs reduce DNA synthesis and delay cell division in the widespread primary producer Prochlorococcus. Environ Pollut 196:147–155CrossRefGoogle Scholar
  5. Chao MR, Hsu YW, Liu HH, Lin JH, Hu CW (2015) Simultaneous detection of 3-nitrotyrosine and 3-nitro-4-hydroxyphenylacetic acid in human urine by online SPE LC-MS/MS and their association with oxidative and methylated DNA lesions. Chem Res Toxicol 28:997–1006CrossRefGoogle Scholar
  6. Chen Y-C, Chiang H-C, Hsu C-Y, Yang T-T, Lin T-Y, Chen M-J, Chen N-T, Wu Y-S (2016) Ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut 218:372–382CrossRefGoogle Scholar
  7. Chen Y, Li X, Zhu T, Han Y, Lv D (2017) PM 2.5-bound PAHs in three indoor and one outdoor air in Beijing: concentration, source and health risk assessment. Sci Total Environ 586:255–264CrossRefGoogle Scholar
  8. Gao B, Guo H, Wang X-M, Zhao X-Y, Ling Z-H, Zhang Z, Liu T-Y (2012) Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. J Hazard Mater 239-240:78–87CrossRefGoogle Scholar
  9. Huang J, Lim MY, Hwang C, Zhao B, Shao L (2015) Contrasts in spatial and temporal variability of oxidative capacity and elemental composition in moxibustion, indoor and outdoor environments in Beijing. Environ Pollut 202:78–84CrossRefGoogle Scholar
  10. Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôt ASH (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514(7521):218–222CrossRefGoogle Scholar
  11. Kume K, Ohura T, Noda T, Amagai T, Fusaya M (2007) Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. J Hazard Mater 144:513–521CrossRefGoogle Scholar
  12. Lafontaine S, Schrlau J, Butler J, Jia Y, Harper B, Harris S, Bramer LM, Waters KM, Harding A, Simonich SLM (2015) Relative influence of trans-Pacific and regional atmospheric transport of PAHs in the Pacific Northwest, U.S. Environ Sci Technol 49:13807–13816CrossRefGoogle Scholar
  13. Lai C-H, Huang H-B, Chang Y-C, Su T-Y, Wang Y-C, Wang G-C, Chen J-E, Tang C-S, Wu T-N, Liou S-H (2017) Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: a longitudinal study. Sci Total Environ 598:289–296CrossRefGoogle Scholar
  14. Li Y, Liu X, Liu M, Li X, Meng F, Wang J, Yan W, Lin X, Zhu J, Qin Y (2016) Investigation into atmospheric PM2.5-borne PAHs in eastern cities of China: concentration, source diagnosis and health risk assessment. Environ Sci Proc Impacts 18:529–537CrossRefGoogle Scholar
  15. Li, Z., Sjodin, A., Porter, E.N., Jr, D.G.P., Needham, L.L., Lee, S., Russell, A.G., Mulholland, J.A. (2009) Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta. Atmos Environ 43, 1043–1050Google Scholar
  16. Liu D, Lin T, Syed JH, Cheng Z, Xu Y, Li K, Zhang G, Li J (2017a) Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities. Sci Rep 7(10398)Google Scholar
  17. Liu J, Man R, Ma S, Li J, Wu Q, Peng J (2015) Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM 2.5 in Guangzhou, China. Mar Pollut Bull 100:134–143CrossRefGoogle Scholar
  18. Liu, Y., Yan, C., Ding, X., Wang, X., Fu, Q., Zhao, Q., Zhang, Y., Duan, Y., Qiu, X., Zheng, M. (2017b) Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Sci Total Environ 584-585, 307–317Google Scholar
  19. Lui KH, Bandowe BAM, Tian L, Chan C-S, Cao J-J, Ning Z, Lee SC, Ho KF (2017) Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. Chemosphere 169:660–668CrossRefGoogle Scholar
  20. Mohanraj R, Solaraj G, Dhanakumar S (2011) PM 2.5 and PAH concentrations in urban atmosphere of Tiruchirappalli, India. B Environ Contam Tox 87:330–335CrossRefGoogle Scholar
  21. Møller P, Folkmann JK, Forchhammer L, Bräuner EV, Danielsen PH, Loft S (2008) Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett 266(1):84–97CrossRefGoogle Scholar
  22. Nawrot TS, Kuenzli N, Sunyer J, Shi T, Moreno T, Viana M, Heinrich J, Forsberg B, Kelly FJ, Sughis M (2009) Oxidative properties of ambient PM_(2.5) and elemental composition: heterogeneous associations in 19 European cities. Atmos Environ 43:4595–4602CrossRefGoogle Scholar
  23. Olivares A, Drooge BLV, Ballesta PP, Grimalt JO, Piña B (2011) Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays. Atmos Environ 45:271–274CrossRefGoogle Scholar
  24. Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126CrossRefGoogle Scholar
  25. Ravindra K, Sokhi R, Grieken RV (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  26. Reche C, Moreno T, Amato F, Viana M, van Drooge BL, Chuang H-C, Bérubé K, Jones T, Alastuey A, Querol X (2012) A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotox Environ Safe 78:327–335CrossRefGoogle Scholar
  27. Schauer JJ, Kleeman MJ, Cass GR, Simoneit BR (2002) Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180CrossRefGoogle Scholar
  28. Shao, L., Hou, C., Geng, C., Liu, J., Hu, Y., Wang, J., Jones, T., Zhao, C., Bérubé, K. (2016) The oxidative potential of PM 10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove. Atmos Environ 127, 372–381Google Scholar
  29. Shao L, Hu Y, Shen R, Schäfer K, Wang J, Wang J, Schnelle-Kreis J, Zimmermann R, BéruBé K, Suppan P (2017) Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing. Sci Total Environ 579:1152–1160CrossRefGoogle Scholar
  30. Shao L, Li J, Zhao H, Yang S, Li H, Li W, Jones T, Sexton K, Bérubé K (2007) Associations between particle physicochemical characteristics and oxidative capacity: an indoor PM 10 study in Beijing, China. Atmos Environ 41:5316–5326CrossRefGoogle Scholar
  31. Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 47:6415–6424CrossRefGoogle Scholar
  32. S. Kermilla, Ying, H., Talip D., Long-yi, S., M. Mahmut (2014) A toxicological assessment of PM2.5 in Urumqi based on plasmid DNA assay. China Environ Sci 34, 786–792 (in Chinese)Google Scholar
  33. Taioli, E., Sram, R.J., Garte, S., Kalina, I., Popov, T.A., Farmer, P.B. (2007) Effects of polycyclic aromatic hydrocarbons (PAHs) in Environ. Pollut. on exogenous and oxidative DNA damage (EXPAH project): description of the population under study. Mutat Res 620, 1–6Google Scholar
  34. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119CrossRefGoogle Scholar
  35. Wang C, Wu S, Zhou S, Wang H, Li B, Chen H, Yu Y, Shi Y (2015a) Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: concentration, source, spatial distribution, and potential human health risk. Sci Total Environ 527-528:375–383CrossRefGoogle Scholar
  36. Wang, F., Lin, T., Feng, J., Fu, H., Guo, Z. (2015b) Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 using positive matrix factorization modeling in Shanghai, China. Environ Sci Proc Impacts 17, 197–205Google Scholar
  37. Wang J, Cao J, Dong Z, Guinot B, Gao M, Huang R, Han Y, Huang Y, Ho SSH, Shen Z (2017a) Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: the effects of suburban scattered emissions in winter. Environ Pollut 231:1330–1343CrossRefGoogle Scholar
  38. Wang J, Geng NB, Xu YF, Zhang WD, Tang XY, Zhang RQ (2014) PAHs in PM 2.5 in Zhengzhou: concentration, carcinogenic risk analysis, and source apportionment. Environ Monit Assess 186:7461–7473CrossRefGoogle Scholar
  39. Wang J, Hang Ho SS, Huang R, Gao M, Liu S, Zhao S, Cao J, Wang G, Shen Z, Han Y (2016) Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi’an, China during heating period: an investigation of spatial distribution and transformation. Chemosphere 159:367–377CrossRefGoogle Scholar
  40. Wang L, Zhao Y, Yi X, Wang Z, Yi Y, Huang T, Gao H, Ma J (2017b) Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environ Sci Pollut R 24:1–15CrossRefGoogle Scholar
  41. Wei Y, Han I-K, Hu M, Shao M, Zhang J, Tang X (2010) Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere 81:1280–1285CrossRefGoogle Scholar
  42. Wu CF, Wu SY, Wu YH, Cullen AC, Larson TV, Williamson J, Liu LJ (2009) Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35:516CrossRefGoogle Scholar
  43. Ying L, Ling C, Huang QH, Li WY, Tang YJ, Zhao JF (2009) Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci Total Environ 407:2931CrossRefGoogle Scholar
  44. Yao L, Yang L, Yuan Q, Yan C, Dong C, Meng C, Sui X, Yang F, Lu Y, Wang W (2016) Sources apportionment of PM2.5 in a background site in the North China plain. Sci Total Environ 541:590–598CrossRefGoogle Scholar
  45. Yu Q, Gao B, Li G, Zhang Y, He Q, Deng W, Huang Z, Ding X, Hu Q, Huang Z, Wang Y, Bi X, Wang X (2016) Attributing risk burden of PM 2.5-bound polycyclic aromatic hydrocarbons to major emission sources: case study in Guangzhou, south China. Atmos Environ 142:313–323CrossRefGoogle Scholar
  46. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515CrossRefGoogle Scholar
  47. Zhang Y, Chen J, Yang H, Li R, Yu Q (2017) Seasonal variation and potential source regions of PM 2.5-bound PAHs in the megacity Beijing, China: impact of regional transport. Environ Pollut 231:329–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yusan Turap
    • 1
  • Dilinuer Talifu
    • 1
    Email author
  • Xinming Wang
    • 2
  • Tuergong Aierken
    • 1
  • Suwubinuer Rekefu
    • 1
  • Hao Shen
    • 1
  • Xiang Ding
    • 2
  • Mailikezhati Maihemuti
    • 1
  • Yalkunjan Tursun
    • 1
  • Wei Liu
    • 3
  1. 1.Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical EngineeringXinjiang UniversityÜrümqiChina
  2. 2.State Key Laboratory of Organic GeochemistryGuangzhou Institute of Geochemistry Chinese Academy of SciencesGuangzhouChina
  3. 3.Environmental Monitoring StationDushanziChina

Personalised recommendations