Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 18109–18120 | Cite as

Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts

  • Еlena Yausheva
  • Sergey Miroshnikov
  • Еlena Sizova
Research Article

Abstract

The research included the study of influence of ultrafine particle preparations (nanoparticles of copper, zinc, iron, CuZn alloy) and metal salts (iron pyrophosphate, copper asparginate, zinc asparginate) on the composition of cecal microbiota of broiler chickens. Before adding the studied nanoparticles and metal salts to the diet, cecal microbiota of broiler chickens was represented by 76% Firmicutes taxon and 16% Bacteroidetes. Numerous among them were the bacteria of the taxa Anaerotruncus spp., Lactobacillus spp., Blautia spp., Alistipes spp., and Bacteroides spp.; they constituted 18, 17, 11, and 6%, respectively. A peculiarity of action of the most analyzed metals in nanoform and in the form of salts was a decrease in the number of phylum Firmicutes bacteria and an increase in the number of microorganisms of the phylum Bacteroidetes. The number of bacteria belonging to the families Ruminococcaceae (III, IV, V, VII, and VIII groups), Bacteroidaceae (in all experimental groups), and Lachnospiraceae (I, IV, V, and VII groups) was registered within the taxa of Firmicutes and Bacteroidetes. At the same time, in some experimental groups, the number of bacteria of the family Lachnospiraceae (II, III, and VIII) decreased in the intestine. The data obtained can be used to assess the possibility of using metal nanoparticles in the poultry diet, as a micronutrient preparation, to correct dysbiosis and to improve the utilization of fodder energy.

Keywords

Nanoparticles Copper Iron Zinc Microbiota Metagenomic sequencing 

Notes

Funding information

The work was carried out with the financial support of the Russian Science Foundation (project No. 14-16-00060 P).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Abrantes MC, Kok J, Silva Lopes Mde F (2014) Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress. Microbiology 160(12):2755–2762.  https://doi.org/10.1099/mic.0.080341-0 CrossRefGoogle Scholar
  2. Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813.  https://doi.org/10.1038/srep14813 CrossRefGoogle Scholar
  3. Adediran GA, Ngwenya BT, Mosselmans JF, Heal KV (2016) Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209(1):280–293.  https://doi.org/10.1111/nph.13588 CrossRefGoogle Scholar
  4. Atarashi K, Tanoue T, Shima T, Imaoka A, Kunawahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S IV, Anov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341.  https://doi.org/10.1126/science.1198469 CrossRefGoogle Scholar
  5. Bain J, Faith J, Gordon J, Muehlbauer M, Newgard C, Rey F, Stevens R (2010) Dissecting the in vivo metabolic potential of two human gut Acetogens. J Biol Chem 285:22082–22090.  https://doi.org/10.1074/jbc.M110.117713 CrossRefGoogle Scholar
  6. Barzan E, Mehrabian S, Irian S (2014) Antimicrobial and genotoxicity effects of zero-valent iron nanoparticles. Jundishapur J Microbiol 7(5):e10054.  https://doi.org/10.5812/jjm.10054 CrossRefGoogle Scholar
  7. Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89.  https://doi.org/10.1016/j.envpol.2012.05.009 CrossRefGoogle Scholar
  8. Bouwmeester H, Van der Zande M, Jepson MA (2018) Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(1):e1481.  https://doi.org/10.1002/wnan.1481 CrossRefGoogle Scholar
  9. Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34.  https://doi.org/10.1186/1477-3155-9-34 CrossRefGoogle Scholar
  10. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101.  https://doi.org/10.1088/0957-4484/25/13/135101 CrossRefGoogle Scholar
  11. Choi HJ, Choi JS, Park BJ, Eom JH, Heo SY, Jung MW, An KS, Yoon SG (2014a) Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate. Sci Rep 4:6271.  https://doi.org/10.1038/srep06271 CrossRefGoogle Scholar
  12. Choi JH, Kim GB, Cha CJ (2014b) Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poult Sci 93:1942–1950.  https://doi.org/10.3382/ps.2014-03974 CrossRefGoogle Scholar
  13. Clavijo V, Flórez MJV (2018) The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci 97(3):1006–1021.  https://doi.org/10.3382/ps/pex359 CrossRefGoogle Scholar
  14. Dehner CA, Barton L, Maurice PA, DuBois JL (2011) Size-dependent bioavailability of hematite (α-Fe O) nanoparticles to a common aerobic bacterium. Environ Sci Technol 45 (3):977–983.Google Scholar
  15. Deniz F, Saygideger SD, Karaman S (2011) Response to copper and sodium chloride excess in Spirulina sp. (cyanobacteria). Bull Environ Contam Toxicol 87(1):11–15.  https://doi.org/10.1007/s00128-011-0300-5 CrossRefGoogle Scholar
  16. Deschemin J-C, Noordine M-L, Remot A, Willemetz A, Afif C, Canonne-Hergaux F et al (2016) The microbiota shifts the iron sensing of intestinal cells. FASEB J 30:252–261.  https://doi.org/10.1096/fj.15-276840 CrossRefGoogle Scholar
  17. Dhas SP, Shiny PJ, Khan S, Mukherjee A, Chandrasekaran N (2014) Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J Basic Microbiol 54(9):916–927.  https://doi.org/10.1002/jobm.201200316 CrossRefGoogle Scholar
  18. Dissanayake NM, Current KM, Obare SO (2015) Mutagenic effects of iron oxide nanoparticles on biological cells. Int J Mol Sci 16(10):23482–23516.  https://doi.org/10.3390/ijms161023482 CrossRefGoogle Scholar
  19. Djoko KY, Paterson BM, Donnelly PS, McEwan AG (2014) Antimicrobial effects of copper (II) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action. Metallomics 6(4):854–863.  https://doi.org/10.1039/c3mt00348e CrossRefGoogle Scholar
  20. Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ (2016a) Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS One 11(8):e0161979.  https://doi.org/10.1371/journal.pone.0161979 CrossRefGoogle Scholar
  21. Doolette CL, Gupta VV, Lu Y, Payne JL, Batstone DJ, Kirby JK (2016b) Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS One 11(8):e0161979.  https://doi.org/10.1371/journal.pone.0161979 CrossRefGoogle Scholar
  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19):2460–2461Google Scholar
  23. Fajardo C, Sacca ML, Costa G, Nande M (2014) Impact of Ag and Al2O3 nanoparticles on soil organisms: in vitro and soil experiments. Sci Total Environ 473:254–261.  https://doi.org/10.1016/j.scitotenv.2013.12.043
  24. Febré N, Silva V, Báez A, Palza H, Delgado K, Aburto I, Silva V (2016) Antibacterial activity of copper salts against microorganisms isolated from chronic infected wounds. Rev Med Chil 144(12):1523–1530.  https://doi.org/10.4067/S0034-98872016001200003 CrossRefGoogle Scholar
  25. Feng Y, Gong J, Yu H, Jin Y, Zhu J, Han Y (2010) Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet Microbiol 140:116–121.  https://doi.org/10.1016/j.vetmic.2009.07.001 CrossRefGoogle Scholar
  26. Feng Y, Min L, Zhang W, Liu J, Hou Z, Chu M, Li L, Shen W, Zhao Y, Zhang H (2017) Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites. Front Microbiol 8:992.  https://doi.org/10.3389/fmicb.2017.00992 CrossRefGoogle Scholar
  27. Fisinin VI, Egorov IA, Draganov IF (2010) Recommendations for feeding poultry. Sergiev Posad. (In Russian) https://coollib.com/b/360296/read
  28. Fisinin VI, Il'ina LA, Iyldyrym EA, Nikonov IN, Filippova VA, Laptev GY, Novikova NI, Grozina AA, Lenkova TN, Manukya VA, Egorov IA (2016) Broiler cecal microbiocenoses depending on mixed fodder. Mikrobiologiia 85(4):472–480 (In Russian)Google Scholar
  29. Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ (2009) Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol 150:259–269.  https://doi.org/10.1016/j.anifeedsci.2008.09.003 CrossRefGoogle Scholar
  30. Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C (2014) Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 133:24–32.  https://doi.org/10.1016/j.jinorgbio.2013.12.009 CrossRefGoogle Scholar
  31. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver a review. Regul Toxicol Pharmacol 68:1–7.  https://doi.org/10.1016/j.yrtph.2013.11.002 CrossRefGoogle Scholar
  32. Hadrup N, Loeschner K, Bergstrom A, Wilcks A, Gao X, Vogel U, Frandsen HL, Larsen EH, Lam HR, Mortensen A (2012) Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol 86:543–551.  https://doi.org/10.1007/s00204-011-0759-1 CrossRefGoogle Scholar
  33. Hamilton RF, Buckingham S, Holian (2014) The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution. Int J Mol Sci 15:6815–6830.  https://doi.org/10.3390/ijms15046815 CrossRefGoogle Scholar
  34. Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173(4):554–558.  https://doi.org/10.1002/jpln.200900358 CrossRefGoogle Scholar
  35. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936.  https://doi.org/10.1002/jps.1143 CrossRefGoogle Scholar
  36. Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JT, Ehrensperger F, Hurrell RF, Pratsinis SE, Langhans W, Zimmermann MB (2010) Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat Nanotechnol 5(5):374–380.  https://doi.org/10.1038/nnano.2010.79 CrossRefGoogle Scholar
  37. Hu Z, Lu X, Sun P, Hu Z, Wang R, Lou C et al (2017) Understanding the performance of microbial community induced by ZnO nanoparticles in enhanced biological phosphorus removal system and its recoverability. Bioresour Technol 225:279–285.  https://doi.org/10.1016/j.biortech.2016.11.080 CrossRefGoogle Scholar
  38. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B Biointerfaces 121:474–483.  https://doi.org/10.1016/j.colsurfb.2014.05.027 CrossRefGoogle Scholar
  39. Huse SM, Mark Welch DB, Voorhis A, Shipunova A, Morrison HG et al (2014) VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics 15:41.  https://doi.org/10.1186/1471-2105-15-41 CrossRefGoogle Scholar
  40. Ismail RA, Sulaiman GM, Abdulrahman SA, Marzoog TR (2015) Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater Sci Eng C Mater Biol Appl 53:286–297.  https://doi.org/10.1016/j.msec.2015.04.047 CrossRefGoogle Scholar
  41. Jaeggi T, Tanja J, Kortman GAM, Diego M, Christophe C, Penny H et al (2014) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64:731–742.  https://doi.org/10.1136/gutjnl-2014-307720 CrossRefGoogle Scholar
  42. Joshua PP, Valli C, Balakrishnan V (2016) Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet World 9(3):287–294.  https://doi.org/10.14202/vetworld.2016.287-294 CrossRefGoogle Scholar
  43. Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2013) Probiotics and its functionally valuable products—a review. Crit Rev Food Sci Nutr 53(6):641–658.  https://doi.org/10.1080/10408398.2011.553752 CrossRefGoogle Scholar
  44. Kalliokoski O, Jacobsen KR, Darusman HS, Henriksen T, Weimann A, Poulsen HE, Hau J, Abelson K (2013) Mice do not habituate to metabolism cage housing—a three week study of male BALB/c mice. PLoS One 8(3):e58460.  https://doi.org/10.1371/journal.pone.0058460 CrossRefGoogle Scholar
  45. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1Google Scholar
  46. Kowalczyk M, Banach M, Rysz J (2011) Ferumoxytol: a new era of iron deficiency anemia treatment for patients with chronic kidney disease. J Nephrol 24(6):717–722.  https://doi.org/10.5301/jn.5000025 CrossRefGoogle Scholar
  47. Krebs NF, Sherlock LG, Jamie W, Diana C, Michael Hambidge K, Feazel LM et al (2013) Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J Pediatr 163:416–423.e4.  https://doi.org/10.1016/j.jpeds.2013.01.024 CrossRefGoogle Scholar
  48. Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf. B. Biointerfaces 128:17–22Google Scholar
  49. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246.  https://doi.org/10.1016/j.scitotenv.2009.06.024 CrossRefGoogle Scholar
  50. Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Thanjavur Chandrasekaran P, Chaudhuri G, Pulimi M, Raichur AM, Babu S, Chandrasekaran N, Nagarajan R, Mukherjee A (2014) Cytotoxicity of TiO2 nanoparticles towards freshwater sediment microorganisms at low exposure concentrations. Environ Res 135:333–345.  https://doi.org/10.1016/j.envres.2014.09.025 CrossRefGoogle Scholar
  51. Lee SH, Prashant S, Jaeyong C, Munsu P, Seho O, Kwon IK et al (2008) Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs. Biol Trace Elem Res 126:57–68.  https://doi.org/10.1007/s12011-008-8209-5 CrossRefGoogle Scholar
  52. Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murinemacrophage cells. Environ Toxicol Chem 33(12):2759–2766.  https://doi.org/10.1002/etc.2735 CrossRefGoogle Scholar
  53. Lien TF (2009) Nanosize of copper sulfate and effects on growth, copper availability, and excretion of pigs. Liv Res Int 1:30–36Google Scholar
  54. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924.  https://doi.org/10.1021/pr0504079 CrossRefGoogle Scholar
  55. Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, Lugli GA, Viappiani A, Ossiprandi MC, van Sinderen D, Ventura M (2016) Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol 18:4727–4738.  https://doi.org/10.1111/1462-2920.13363 CrossRefGoogle Scholar
  56. Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam SI, Alzoubi KH (2015) Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against Gram positive and Gram negative biofilm bacteria. Cytotechnology 67(3):427–435.  https://doi.org/10.1007/s10616-014-9701-8 CrossRefGoogle Scholar
  57. Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, Javanmard A, Muhammad Anas O, Yazid AM (2010) Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus. Poult Sci 89(3):470–476.  https://doi.org/10.3382/ps.2009-00495 CrossRefGoogle Scholar
  58. Mirhendi M, Emtiazi G, Roghanian R (2013) Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri. IET Nanobiotechnol 7(4):135–139.  https://doi.org/10.1049/iet-nbt.2012.0032 CrossRefGoogle Scholar
  59. Miroshnikova E, Arinzhanov A, Kilyakova Y, Sizova E, Miroshnikov S (2015) Antagonist metal alloy nanoparticles of iron and cobalt: impact on trace element metabolism in carp and chicken. Hum Vet Med 7(4):253–259 http://www.hvm.bioflux.com.ro/docs/2015.253-259.pdf Google Scholar
  60. Mohd Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW (2015) Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog 7:4.  https://doi.org/10.1186/s13099-015-0051-7 CrossRefGoogle Scholar
  61. Morrill K, May K, Leek D, Langland N, Jeane LD, Ventura J, Skubisz C et al (2013) Spectrum of antimicrobial activity associated with ionic colloidal silver. J Altern Complement Med 19:224–231.  https://doi.org/10.1089/acm.2011.0681 CrossRefGoogle Scholar
  62. Neethu CS, Mujeeb Rahiman KM, Saramma AV, Mohamed Hatha AA (2015) Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic. Can J Microbiol 61(6):429–435.  https://doi.org/10.1139/cjm-2014-0803 CrossRefGoogle Scholar
  63. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267.  https://doi.org/10.1126/science.1223813 CrossRefGoogle Scholar
  64. Nogueira V, Lopes I, Rocha-Santos T, Santos AL et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350.  https://doi.org/10.1016/j.scitotenv.2012.02.041 CrossRefGoogle Scholar
  65. Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA (2014) The chicken gastrointestinal microbiome. FEMS Microbiol Lett 360(2):100–112.  https://doi.org/10.1111/1574-6968.12608 CrossRefGoogle Scholar
  66. Palanikumar L, Ramasamy SN, Balachandran C (2014) Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol 8(2):111–117.  https://doi.org/10.1049/iet-nbt.2012.0008 CrossRefGoogle Scholar
  67. Park SH, Lee SI, Kim SA, Christensen K, Ricke SC (2017) Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS One 12(8):e0182805.  https://doi.org/10.1371/journal.pone.0182805 CrossRefGoogle Scholar
  68. Pietroiusti A, Magrini A, Campagnolo L (2016) New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol 299:90–95.  https://doi.org/10.1016/j.taap.2015.12.017 CrossRefGoogle Scholar
  69. Prasad AS (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 43(5):370–377.  https://doi.org/10.1016/j.exger.2007.10.013 CrossRefGoogle Scholar
  70. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014 CrossRefGoogle Scholar
  71. Ruíz FO, Pascual L, Giordano W, Barberis L (2015) Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae. Pathog Dis 73(3):ftv013.  https://doi.org/10.1093/femspd/ftv013 CrossRefGoogle Scholar
  72. Santos A, Mauro MS, Diaz DM (2006) Prebiotics and their long-term influence on the microbial populations of the mouse bowel. Food Microbiol 23(5):498–503.  https://doi.org/10.1016/j.fm.2005.07.004 CrossRefGoogle Scholar
  73. Sazawal S, Sunil S, Black RE, Mahdi R, Chwaya HM, Stoltzfus RJ et al (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367:133–143.  https://doi.org/10.1016/S0140-6736(06)67962-2 CrossRefGoogle Scholar
  74. Seil JT, Webster TJ (2012) Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnol 23(49):495101.  https://doi.org/10.1088/0957-4484/23/49/495101 CrossRefGoogle Scholar
  75. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53.  https://doi.org/10.2147/NSA.S39406 CrossRefGoogle Scholar
  76. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ (2014) Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9:e91941.  https://doi.org/10.1371/journal.pone.0091941 CrossRefGoogle Scholar
  77. Sergeev GB (2002) Size effects in nanochemistry. Russ Chem J XLVI(5):22–29 (на русском) http://www.chem.msu.su/rus/jvho/2002-5/22.pdf Google Scholar
  78. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA et al (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674.  https://doi.org/10.1126/science.1212782 CrossRefGoogle Scholar
  79. Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater 274(0):399–403.  https://doi.org/10.1016/j.jhazmat.2014.04.003 CrossRefGoogle Scholar
  80. Shao Y, Lei Z, Yuan J, Yang Y, Guo Y, Zhang B (2014) Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers challenged with Salmonella enterica serovar typhimurium. J Microbiol 52(12):1002–1011.  https://doi.org/10.1007/s12275-014-4347-y CrossRefGoogle Scholar
  81. Sizova E, Yausheva E, Kosyan D, Miroshnikov S (2015) Growth enhancement by intramuscular injection of elemental iron nano- and microparticles. Mod Appl Sci 9(10):17–26.  https://doi.org/10.5539/mas.v9n10p17 CrossRefGoogle Scholar
  82. Sizova ЕА, Miroshnikov SА, Lebedev SV, Кudasheva АV, Ryabov (2016) To the development of innovative mineral additives based on alloy of Fe and Co antagonists as an example. Sel’skokhozyaistvennaya Biologiya [Agric Biol] 51(4):553–562.  https://doi.org/10.15389/agrobiology.2016.4.553rus (на русском)CrossRefGoogle Scholar
  83. Sondi I, Salopek-sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182.  https://doi.org/10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  84. Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, Moore RJ (2013) Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol 164:85–92.  https://doi.org/10.1016/j.vetmic.2013.01.030 CrossRefGoogle Scholar
  85. Stanley D, Hughes RJ, Geier MS, Moore RJ (2016) Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: challenges presented for the identification of performance enhancing probiotic bacteria. Front Microbiol 19(7):187.  https://doi.org/10.3389/fmicb.2016.00187 CrossRefGoogle Scholar
  86. Tillman GE, Haas GJ, Wise MG, Oakley B, Smith MA, Siragusa GR (2011) Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol Ecol 77:395–403.  https://doi.org/10.1111/j.1574-6941.2011.01119.x CrossRefGoogle Scholar
  87. Tilocca B, Witzig M, Rodehutscord M, Seifert J (2016) Variations of phosphorous accessibility causing changes in microbiome functions in the gastrointestinal tract of chickens. PLoS One 11(10):e0164735.  https://doi.org/10.1371/journal.pone.0164735 CrossRefGoogle Scholar
  88. Tompkins GR, O’Dell NL, Bryson IT, Pennington CB (2001) The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine. Curr Microbiol 43:38–42.  https://doi.org/10.1007/s002840010257 CrossRefGoogle Scholar
  89. Volodina LA, Zhigach AN, Leĭpunskiĭ IO, Zotova ES, Glushchenko NN (2013) The influence of physical-chemical characteristics of surface modified copper nanoparticles on E. coli cell population growth suppression and on electrostatic properties of their membranes. Biofizika 2013 58(3):507–515 (In Russian)Google Scholar
  90. Wang С, Wang MQ, Ye SS, Tao WJ, Du YJ (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult Sci 90(10):2223–2228.  https://doi.org/10.3382/ps.2011-01511 CrossRefGoogle Scholar
  91. Wei S, Morrison M, Yu Z (2013) Bacterial census of poultry intestinal microbiome. Poult Sci 92:671–683.  https://doi.org/10.3382/ps.2012-02822 CrossRefGoogle Scholar
  92. Wilkinson TJ, Cowan AA, Vallin HE, Onime LA, Oyama LB, Cameron SJ et al (2017) Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front Microbiol 8:1089.  https://doi.org/10.3389/fmicb.2017.01089 CrossRefGoogle Scholar
  93. Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S (2015) Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicol 9(3):279–289.  https://doi.org/10.3109/17435390.2014.921346 CrossRefGoogle Scholar
  94. Wise MG, Siragusa GR (2007) Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 102:1138–1149Google Scholar
  95. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3(1):4–14.  https://doi.org/10.4161/gmic.19320 CrossRefGoogle Scholar
  96. Wu C, Labrie J, Tremblay YD, Haine D, Mourez M, Jacques M (2013) Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria. J Appl Microbiol 115(1):30–40.  https://doi.org/10.1111/jam.12197 CrossRefGoogle Scholar
  97. Wu Q, Huang K, Sun H, Ren H, Zhang XX, Ye L (2018) Comparison of the impacts of zinc ions and zinc nanoparticles on nitrifying microbial community. J Hazard Mater 5(343):166–175.  https://doi.org/10.1016/j.jhazmat.2017.09.022 CrossRefGoogle Scholar
  98. Walugembe M, Hsieh JC, Koszewski NJ, Lamont SJ, Persia ME, Rothschild MF (2015) Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult Sci 94(10):2351–2359.  https://doi.org/10.3382/ps/pev242 CrossRefGoogle Scholar
  99. Yang Y, Li M, Michels C, Moreira-Soares H, Alvarez PJ (2014) Differential sensitivity of nitrifying bacteria to silver nanoparticles in activated sludge. Environ Toxicol Chem 33(10):2234–2239.  https://doi.org/10.1002/etc.2678 CrossRefGoogle Scholar
  100. Yausheva EV, Miroshnikov SА, Sizova EА, Vasilchenko AS (2013) The study of the biological activity of metal nanoparticles Questions of biological. Med Pharm Chem 11(9):054–059 http://www.radiotec.ru/article/13459 Google Scholar
  101. Yausheva EV, Miroshnikov SА, Kosyan DB, Sizova EА (2016a) Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken. Sel’skokhozyaistvennaya Biologiya [Agric Biol] 51(6):912–920.  https://doi.org/10.15389/agrobiology.2016.6.912rus (на русском)CrossRefGoogle Scholar
  102. Yausheva Е, Sizova Е, Lebedev S, Skalny A, Miroshnikov S, Plotnikov A, Khlopko Y, Gogoleva N, Cherkasov S (2016b) Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res 23(13):13245–13254.  https://doi.org/10.1007/s11356-016-6474-y https://link.springer.com/article/10.1007%2Fs11356–016-6474-y CrossRefGoogle Scholar
  103. Yegani M, Korver DR (2008) Factors affecting intestinal health in poultry. Poult Sci 87:2052–2063.  https://doi.org/10.3382/ps.2008-00091 CrossRefGoogle Scholar
  104. Zhang LY et al (2016) Kinetics of iron absorption by in situ ligated small intestinal loops of broilers involved in iron transporters. J Anim Sci 94(12):5219–5229.  https://doi.org/10.2527/jas.2016-0713. CrossRefGoogle Scholar
  105. Zheng X, Huang H, Su Y, Wei Y, Chen Y (2015) Long-term effects of engineered nanoparticles on enzyme activity and functional bacteria in wastewater treatment plants. Water Sci Technol 72(1):99–105.  https://doi.org/10.2166/wst.2015.194 CrossRefGoogle Scholar
  106. Zimmermann MB, Chassard C, Rohner F, N’goran EK, Nindjin C, Dostal A, Utzinger J, Ghattas H, Lacroix C, Hurrell RF (2010) The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire. Am J Clin Nutr. 92(6):1406–1415.  https://doi.org/10.3945/ajcn.110.004564 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Еlena Yausheva
    • 1
  • Sergey Miroshnikov
    • 1
  • Еlena Sizova
    • 1
    • 2
  1. 1.State Educational Institution All-Russian Research Institute of Beef Cattle BreedingOrenburgRussia
  2. 2.Orenburg State UniversityOrenburgRussia

Personalised recommendations