Environmental Science and Pollution Research

, Volume 25, Issue 15, pp 15226–15234 | Cite as

A new approach for the agglomeration and subsequent removal of polyethylene, polypropylene, and mixtures of both from freshwater systems – a case study

  • Adrian Frank Herbort
  • Michael Toni Sturm
  • Katrin Schuhen
Short Research and Discussion Article


Based on a new concept for the sustainable removal of microplastics from freshwater systems, a case study for a pH-induced agglomeration and subsequent removal of polyethylene and polypropylene particles from water is presented. The two-step-based process includes firstly a localization and secondly an aggregation of microplastic particles (250–350 μM) in a physicochemical process. The research describes a strong increase in the particle size independent of pH of the aquatic milieu induced by the addition of trichlorosilane-substituted Si derivatives. The resulting Si-based microplastic aggregates (particle size after aggregation is 2–3 cm) could be easily removed by use of, e.g., sand traps. Due to the effect that microplastic particles form agglomeration products under every kind of process conditions (e.g., various pH, various polymer concentrations), the study shows a high potential for the sustainable removal of particles from wastewater.


Microplastic Freshwater systems Wastewater treatment Sol-gel process Inert organic chemical pollutants Suspended particles 


Funding information

The research projects of Wasser 3.0 ( are conducted by means of the financial support by the German Federal Ministry for Economic Affairs and Energy through the provision of ZIM (Central Innovation Program for SME) project funds. The enterprise abcr GmbH ( from Karlsruhe (GERMANY) is directly involved in the project as an industrial partner for the material science scale-up. IR spectra are provided by SAS Hagmann ( from Horb am Neckar (GERMANY).


  1. Abegglen C, Siegrist H (2012) Mikroverunreinigungen aus kommunalem Abwasser. Accessed 2 Aug 2017
  2. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919(1–3):140–145. CrossRefGoogle Scholar
  3. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. CrossRefGoogle Scholar
  4. Avio CG, Gorbi S, Regoli F (2016) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11. CrossRefGoogle Scholar
  5. Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789. CrossRefGoogle Scholar
  6. Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut (Barking, Essex : 1987) 185:16–23. CrossRefGoogle Scholar
  7. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci 364(1526):1985–1998. CrossRefGoogle Scholar
  8. Bergna HE (1994) The colloid chemistry of silica - an overview, Chapter 1. Adv Chem 234:1–47.
  9. Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100(1–3):31–50. CrossRefGoogle Scholar
  10. Brook MA (1999) Organosilicon chemistry. Synthetic applications in organic, organometallic, materials, and polymer chemistry. Wiley, New YorkGoogle Scholar
  11. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. CrossRefGoogle Scholar
  12. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23(23):2388–2392. CrossRefGoogle Scholar
  13. Bundesministeriums der Justiz und für Verbraucherschutz (2017) Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer (Abwasserverordnung - AbwV):2. Accessed 17 April 2018
  14. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. CrossRefGoogle Scholar
  15. Choi JM, Jeong D, Cho E, Jun B-H, Park S, Yu J-H, Tahir MN, Jung S (2016) Chemically functionalized silica gel with alkynyl terminated monolayers as an efficient new material for removal of mercury ions from water. J Ind Eng Chem 35:376–382. CrossRefGoogle Scholar
  16. Chuang SH, Chang TC, Ouyang CF, Leu JM (2007) Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park. Water Sci Technol 55(1–2):187–195. CrossRefGoogle Scholar
  17. Chubarenko I, Bagaev A, Zobkov M, Esiukova E (2016) On some physical and dynamical properties of microplastic particles in marine environment. Mar Pollut Bull 108(1–2):105–112. CrossRefGoogle Scholar
  18. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. CrossRefGoogle Scholar
  19. Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689. CrossRefGoogle Scholar
  20. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913. CrossRefGoogle Scholar
  21. Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology 294(2–3):61–79. CrossRefGoogle Scholar
  22. GRACE (2015) Sicherheitsdatenblatt 1907/2006/EG, Artikel 31: SP537-12158, WormsGoogle Scholar
  23. Hartline NL, Bruce NJ, Karba SN, Ruff EO, Sonar SU, Holden PA (2016) Microfiber masses recovered from conventional machine washing of new or aged garments. Environ Scie Technol 50(21):11532–11538. CrossRefGoogle Scholar
  24. Heinonen M, Talvitie J (2014) Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant,Baltic Marine Environment Protection Commission, Helsinki, Accessed 17 April 2018
  25. Herbort AF, Schuhen K (2016) GDCh-Monographie Bd. 50: 2nd international conference on the chemistry of contruction materials, 1. Auflage. Gesellschaft Dt. Chemiker, Frankfurt am MainGoogle Scholar
  26. Herbort AF, Schuhen K (2017a) A concept for the removal of microplastics from the marine environment with innovative host-guest relationships. Environ Sci Pollut Res Int 24(12):11061–11065. CrossRefGoogle Scholar
  27. Herbort AF, Schuhen K (2017b) Wasser 3.0 - Von der Idee zum Konzept in die Realität - Neues Verfahren zur Spurenstoffentfernung. Accessed 11 Aug 2017
  28. Herbort AF, Schuhen K (2017c) Problem erkannt - Mikroplastik in kommunalen Kläranlagen nachhaltig entfernen. Accessed 1 Aug 2017
  29. Hurkes N, Ehmann HMA, List M, Spirk S, Bussiek M, Belaj F, Pietschnig R (2014) Silanol-based surfactants: synthetic access and properties of an innovative class of environmentally benign detergents. Chemistry (Weinheim an der Bergstrasse, Germany) 20(30):9330–9335. Google Scholar
  30. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Marine pollution. Plastic waste inputs from land into the ocean. Science (New York, NY) 347(6223):768–771. CrossRefGoogle Scholar
  31. Karapanagioti HK, Klontza I (2008) Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Mar Environ Res 65(4):283–290. CrossRefGoogle Scholar
  32. Kershaw P (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. Accessed 14 Nov 2017
  33. Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Loder M, Gerdts G (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8. CrossRefGoogle Scholar
  34. Lares M, Ncibi MC, Sillanpää M, Sillanpää M (2018) Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133:236–246. CrossRefGoogle Scholar
  35. Lechner A, Ramler D (2015) The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation. Environ Pollut (Barking, Essex : 1987) 200:159–160. CrossRefGoogle Scholar
  36. Leslie H, van Velzen M, Vethaak A (2013) Microplastic survey of the Dutch environment. Novel data set of microplastics in North Sea sediments, treated wastewater effluents and marine biota. Final report R-13/11Google Scholar
  37. Liu Y, Li J, Yang Y, Li B (2015) Facile immobilization of polyaspartate onto silica gels via poly(dopamine) for the removal of methylene blue from aqueous solution. Appl Surf Sci 351:831–839. CrossRefGoogle Scholar
  38. LyondellBasell (2018a) Density HDPE. Accessed 18 Feb 2018
  39. LyondellBasell (2018b) Density LDPE. Accessed 18 Feb 2018
  40. Magnusson K, Nóren F (2014) Screening of microplastic particles in and downstream a wastewater treatment plant. IVL Swedish Environmental Research Institute, StockholmGoogle Scholar
  41. Mintenig SM, Int-Veen I, Loder MGJ, Primpke S, Gerdts G (2016) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. CrossRefGoogle Scholar
  42. Mitsubishi Engineering-Plastics Corporation (2017) Rate of water and moisture absorption. Accessed 25 Jul 2017
  43. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. CrossRefGoogle Scholar
  44. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1–2):178–185. CrossRefGoogle Scholar
  45. Neumeyer F, Auner N (2016) One-step synthesis of siloxanes from the Direct Process Disilane Residue. Chemistry (Weinheim an der Bergstrasse, Germany) 22(48):17165–17168. Google Scholar
  46. Palaprat G, Ganachaud F (2003) Synthesis of polydimethylsiloxane microemulsions by self-catalyzed hydrolysis/condensation of dichlorodimethylsilane. C R Chim 6(11–12):1385–1392. CrossRefGoogle Scholar
  47. Pascall MA, Zabik ME, Zabik MJ, Hernandez RJ (2005) Uptake of polychlorinated biphenyls (PCBs) from an aqueous medium by polyethylene, polyvinyl chloride, and polystyrene films. J Agric Food Chem 53(1):164–169. CrossRefGoogle Scholar
  48. PlasticsEurope (2015) Plastics - the facts 2015 - an analysis of European plastics production, demand and waste data. Accessed 17 April 2018
  49. PlasticsEurope (2016) Plastics—the facts 2016—an analysis of European plastics production, demand and waste data. Accessed 2 Mar 2017
  50. PlasticsEurope (2017) Plastics—the facts 2017—an analysis of European plastics production, demand and waste data. Accessed 18 Feb 2018
  51. Pope E, Mackenzie JD (1986) Sol-gel processing of silica. J Non-Cryst Solids 87(1–2):185–198. CrossRefGoogle Scholar
  52. Primpke S, Imhof H, Piehl S, Lorenz C, Löder M, Laforsch C, Gerdts G (2017) Mikroplastik in der Umwelt. Chem Unserer Zeit 51(6):402–412. CrossRefGoogle Scholar
  53. Ratola N, Ramos S, Homem V, Silva JA, Jiménez-Guerrero P, Amigo JM, Santos L, Alves A (2016) Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environ Sci Pollut Res Int 23(4):3273–3284. CrossRefGoogle Scholar
  54. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science (New York, NY) 313(5790):1072–1077. CrossRefGoogle Scholar
  55. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26. CrossRefGoogle Scholar
  56. Sundt P, Schulze P-E, Syversen F (2014) Sources of microplastics-pollution to the marine environment. Accessed 6 Dec 2016
  57. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2027–2045. CrossRefGoogle Scholar
  58. von Moos N, Burkhardt-Holm P, Kohler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335. CrossRefGoogle Scholar
  59. Wawrzkiewicz M, Wiśniewska M, Wołowicz A, Gun’ko VM, Zarko VI (2017) Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Microporous Mesoporous Mater 250:128–147. CrossRefGoogle Scholar
  60. Welden NAC, Cowie PR (2016) Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut\ (Barking, Essex : 1987) 218:895–900. CrossRefGoogle Scholar
  61. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. CrossRefGoogle Scholar
  62. Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60(10):1810–1814. CrossRefGoogle Scholar
  63. Ziajahromi S, Neale PA, Leusch FDL (2016) Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci Technol 74(10):2253–2269. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Environmental SciencesUniversity of Koblenz – LandauLandau in der PfalzGermany

Personalised recommendations