Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 23, pp 22571–22583 | Cite as

Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination

  • Maria Łebkowska
  • Anna Rutkowska-Narożniak
  • Elżbieta Pajor
  • Agnieszka Tabernacka
  • Monika Załęska-Radziwiłł
Research Article
  • 81 Downloads

Abstract

The current study presents results concerning the effect of a static magnetic field (SMF) on synthetic wastewater biodegradation by activated sludge and on dehydrogenase activity of microorganisms of activated sludge. The highest process efficiency was obtained for a SMF of 0.0075 T among the tested magnetic flux density values of 0.005–0.14 T. Decrease in COD was 25% higher for the bioreactor exposed to SMF compared with control experiments. The positive effect of SMF 0.0075–0.0080 T was confirmed in experiments on the dehydrogenase activity of activated sludge. It was also shown that a SMF of 0.007 T increased p-nitroaniline removal from wastewater and influenced the recombination frequency in a streptomycin-resistant bacteria strain of Eschercihia coli.

Keywords

Static magnetic field Activated sludge p-Nitroaniline biodegradation Recombination of bacteria Wastewater biodegradation Dehydrogenase activity 

References

  1. Al-Barzenji HA, Al-Jubouri R (2010) The effect of static magnetic field on some oral microorganisms (an in vitro study). Tikrit Med J 16:34–38Google Scholar
  2. Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106CrossRefGoogle Scholar
  3. Bajpai I, Saha N, Basu B (2012) Moderate intensity static magnetic field has bactericidal effect on E coli and S epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater 100(5):1206–1217CrossRefGoogle Scholar
  4. Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci 73(6):1999–2003CrossRefGoogle Scholar
  5. Čech JS, Chudoba J, Grau P (1985) Determination of kinetic constants of activated sludge microorganisms. Wat Sci Technol 17(2–3):259–272Google Scholar
  6. Chen H, Li X (2008) Effects of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain acids by activated sludge. Bioresour Technol 99(13):5538–5544CrossRefGoogle Scholar
  7. Cook ES, Smith MJ (1964) Increase of trypsic activity. In: Barnothy MF (ed) Biological effects of magnetic fields. Springer, Boston, pp. 246–254Google Scholar
  8. Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36(3):195–217CrossRefGoogle Scholar
  9. Fijalkowski K, Nawrotek P, Struk M, Kordas M, Rakoczy R (2013) The effects of rotating magnetic field on growth rate cell metabolic activity and biofilm formation by Staphylococcus aureus and Escherichia coli. J Magn 18(3):289–296CrossRefGoogle Scholar
  10. Filipič J, Kraigher B, Tepuš B, Kokol V, Mandic-Mulec I (2012) Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120:225–232CrossRefGoogle Scholar
  11. Germishev TM, Tsolova KN (1986) Effect of a constant magnetic field on the activity of certain respiratory enzymes in wheat roots. Fiziol Rast (Sofia) 12:63–69Google Scholar
  12. Gorczyńska E, Węgrzynowicz R (1986) Effect of chronic exposure to static magnetic field upon the serum glutamic pyruvic transaminase activity GPT and morphology of the cardiac muscle skeletal muscles kidney’s cerebellum and lung tissue in guinea pigs. J Hyg Epidemiol Microbiol Immunol 30:275–281Google Scholar
  13. Haghi M, Maghsoodi MJ, Janipor MB, Seyyedgholizadeh S (2012) Effect of static magnetic field on E. coli growth. Int J Adv Biotechnol Res 3(4):777–781Google Scholar
  14. Hunt RW, Zavalin A, Bhatnagar A, Chinnasamy S, Das KC (2009) Electromagnetic biostimulation of living cultures for biotechnology biofuel and bioenergy applications. Int J Mol Sci 10(10):4515–4558CrossRefGoogle Scholar
  15. Ikehata M, Koana T, Suzuki Y, Shimizu H, Nakagawa M (1999) Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res 427(2):147–156CrossRefGoogle Scholar
  16. Jung J, Sanij B, Godbole S, Sofer S (1993) Biodegradation of phenol: a comparative study with and without applying magnetic fields. J Chem Technol Biotechnol 56(1):73–76CrossRefGoogle Scholar
  17. Kamel FH, Saeed CH, Qader SS (2013) The effects of magnetic fields on some biological activities of Pseudomonas aeruginosa. Diyala J Med 5(1):29–35Google Scholar
  18. Klimiuk E, Lossov K, Bulińska M (1995) Reaction kinetics and modelling of biochemical reactors in wastewater treatment processes. ART Publishing Olsztyn (in Polish)Google Scholar
  19. Kohno M, Yamazaki M, Kimura I, Wada M (2000) Effect of static magnetic fields on bacteria: Streptococcus mutans Staphylococcus aureus and Escherichia coli. Pathophysiology 7(2):143–148CrossRefGoogle Scholar
  20. Křiklavová L, Truhlář M, Škodová P, Lederer T, Jirků V (2014) Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor. Bioresour Technol 167:510–513CrossRefGoogle Scholar
  21. Krzemieniewski M, Dębowski M, Janczukowicz W, Pesta J (2003) Effect of sludge conditioning by chemical methods with magnetic field application. Pol J Environ Stud 12(5):595–605Google Scholar
  22. Łebkowska M (1991) The influence of static magnetic fields on biodegradation of organic substances. Prace naukowe Inżynierii Sanitarnej i Wodnej (13). Oficyna Wydawnicza Politechniki Warszawskiej (in Polish)Google Scholar
  23. Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol 102:8777–8782CrossRefGoogle Scholar
  24. Łebkowska M, Rutkowska-Narożniak A, Pajor E (2013) Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea–formaldehyde resin production by activated sludge. Bioresour Technol 132:78–83CrossRefGoogle Scholar
  25. Niu C, Geng J, Ren H, Ding L, Xu K, Liang W (2013) The strengthening effect of a static magnetic field on activated sludge activity at low temperature. Bioresour Technol 150:156–162CrossRefGoogle Scholar
  26. Nossol B, Buse G, Silny J (1993) Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase. Bioelectromagnetics 14(4):361–372CrossRefGoogle Scholar
  27. Okuda T, Kimiko N, Yosuke E, Shigekazu N, Takeo I, Kanji I (1998) The effect static magnetic fields and X-rays on instability of microsatellite repetitive sequences. J Radiat Res 39:279–287CrossRefGoogle Scholar
  28. Ozga-Zielińska M, Nawalany M (1999) Identification and verification of integral model of a catchment. Bibl Wiad IMUZ 61:43–54 (in Polish)Google Scholar
  29. Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M (2004) Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 561:53–62CrossRefGoogle Scholar
  30. Rutkowska-Narożniak A (1997) An application of static magnetic field to intensify the pollutions biodegradation in wastewater. Ph.D. thesis, Oficyna Wydawnicza Politechniki Warszawskiej (in Polish)Google Scholar
  31. Skowron M (2009) Biostimulation of camelina seeds with a strong magnetic field. Prace Instytutu Elektrotechniki 56(243):149–170 (in Polish)Google Scholar
  32. Snoussi S, El May A, Coquet L, Chan P, Jouenne T, Landoulsi A, Emmanuelle DÉ (2012) Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci 10(1):6CrossRefGoogle Scholar
  33. Swerdlow AJ (2008) Static magnetic fields. Report of the independent advisory group on non-ionising radiation. Health Protection AgencyGoogle Scholar
  34. Tagourti J, El May A, Aloui A, Chatti A, Aissa RB, Landoulsi A (2010) Static magnetic field increases the sensitivity of Salmonella to gentamicin. Ann Microbiol 60(3):519–522CrossRefGoogle Scholar
  35. Teichmann EM, Hengstler JG, Schreiber WG, Akbari W, Georgi H, Hehn M, Schiffer I, Oesch F, Spiess HW, Thelen M (2000) Research on possible mutagene potential of magnetic fields. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. Georg Thieme Verlag,·Stuttgart 172 (11) pp. 934–939 (in German)Google Scholar
  36. Tomska A, Wolny L (2008) Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 222:368–373CrossRefGoogle Scholar
  37. Varga A (1976) Biosynthesis of proteins by microorganisms exposed to electromagnetic fields. VEB Georg Thierne, Leipzig (in German)Google Scholar
  38. Wiley RH, Cook SL, Crawford TH, Fairless BJ, Liu H, Weber EC (1964) Biological effects of magnetic fields. III. Plenum PressGoogle Scholar
  39. Yamaguchi H, Hosokawa K, Soda A, Miyamoto H, Kinouchi Y (1993) Effects of seven months’ exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1156:302–306CrossRefGoogle Scholar
  40. Zhang QM, Tokiwa M, Doi T, Nakahara T, Chang PW, Nakamura N, Hori M, Miyakoshi J, Yonei S (2003) Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol 79(4):281–286CrossRefGoogle Scholar
  41. Zhu S-C, Xu Z-L, Meng H-J, Zhou J, Chen Z (2012) Effect of magnetic field on the accumulation of polyhydroxyalkanoates (PHAs) by microorganism in activated sludge. Bioprocess Biosyst Eng 35:985–991CrossRefGoogle Scholar
  42. Zieliński M, Rusanowska P, Dębowski M, Hajduk A (2018) Influence of static magnetic field on sludge properties. Sci Total Environ 625:738–742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Building Services, Hydro and Environmental Engineering, Biology DivisionWarsaw University of TechnologyWarsawPoland

Personalised recommendations