Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 6, pp 5282–5293 | Cite as

Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. II: insights from STEM-EDXS and DFT calculations

  • Tadahiro YokosawaEmail author
  • Eric Prestat
  • Robert Polly
  • Muriel BoubyEmail author
  • Kathy Dardenne
  • Nicolas Finck
  • Sarah J. Haigh
  • Melissa A. Denecke
  • Horst Geckeis
Analytical methods for characterization of nano- and micro-objects
  • 473 Downloads

Abstract

Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites. This finding corroborates those recently obtained by AsFlFFF and EXAFS spectroscopy on the same sample (Finck et al. 2018). DFT calculations indicate that Lu incorporation within goethite or hematite are almost equally likely, suggesting that experimental parameters such as temperature and reaction time which affect reaction kinetics, play important roles in determining the Lu uptake. It seems likely that these results may be transferable to predict the behavior of chemically homologous trivalent actinides.

Keywords

Two-line ferrihydrite Lutetium Transformation products Hematite Goethite Incorporation STEM-EDXS DFT 

Notes

Acknowledgements

The authors would like to thank D. Wang at Karlsruhe Institute of Technology for useful discussions. S.J.H. acknowledges support from EPSRC (EP/M010619/1 and EP/K016946/1) and NNUMAN.

Supplementary material

11356_2018_1904_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1744 kb)

References

  1. Baleeiroa A, Fiol S, Otero-Fariñaa A, Anteloa J (2018) Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Applied Geochem 89:129–137.  https://doi.org/10.1016/j.apgeochem CrossRefGoogle Scholar
  2. Batson PE, Dellby N, Krivanek OL (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418:617–620.  https://doi.org/10.1038/nature00972 CrossRefGoogle Scholar
  3. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  4. Bouby M, Geckeis H, Manh TN, Yun JI, Dardenne K, Schäfer T, Walter C, Kim JI (2004) Laser-induced breakdown detection combined with asymmetrical flow field-flow fractionation: application to iron oxi/hydrooxide colliod characterization. J Chromatogr A 1040:97–104.  https://doi.org/10.1016/j.chroma.2004.03.047 CrossRefGoogle Scholar
  5. Brydson R, Brown A, Benning LG, Livi K (2014) Analytical transmission electron microscopy. Rev Mineral Geochem 78:219–269CrossRefGoogle Scholar
  6. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrences and uses. VCH, Weinheim.  https://doi.org/10.1002/3527602097 CrossRefGoogle Scholar
  7. Cornell RM, Mann S, Skarnulis JA (1983) A high-resolution electron microscopy examination of domain boundaries in crystals of synthetic goethite. J Chem Soc Faraday Trans 79:2679–2684.  https://doi.org/10.1039/F19837902679 CrossRefGoogle Scholar
  8. Dardenne K, Schäfer T, Denecke MA, Rothe J, Kim JI (2001) Identification and characterization of sorbed lutetium species on 2-line ferrihydrite by sorption data modeling, TRLFS and EXAFS. Radiochim Acta 89:469–479.  https://doi.org/10.1524/ract.2001.98.7.469 CrossRefGoogle Scholar
  9. Dardenne K, Schäfer T, Lindqvist-Reis P, Denecke MA, Plaschke M, Rothe J, Kim JI (2002) Low temperature XAFS investigation on the lutetium binding changes during the 2-line ferrihydrite alteration process. Environ Sci Technol 36:5092–5099.  https://doi.org/10.1021/es025513f CrossRefGoogle Scholar
  10. Deglmann P, May K, Furche F, Ahlrichs R (2004) Nuclear second analytical derivative calculations using auxiliary basis set expansions. Chem Phys Lett 384:103–107.  https://doi.org/10.1016/j.cplett.2003.11.080 CrossRefGoogle Scholar
  11. Denecke MA (2006) Actinide speciation using X-ray absorption fine structure spectroscopy. Coord Chem Rev 250:730–754.  https://doi.org/10.1016/j.ccr.2005.09.004 CrossRefGoogle Scholar
  12. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547.  https://doi.org/10.1016/S0016-7037(02)00953-5 CrossRefGoogle Scholar
  13. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem Phys Lett 242:652–660.  https://doi.org/10.1016/0009-2614(95)00621-A CrossRefGoogle Scholar
  14. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor Chem Accounts 97:119–124.  https://doi.org/10.1007/s002140050244 CrossRefGoogle Scholar
  15. Finck N, Drot R, Lagarde G, Mercier-Bion F, Catalette H, Simoni E (2008) Temperature effects on the interaction mechanism between U(VI) and Eu(III) and ZrP2O7: experiment and modelling. Radiochim Acta 96:11–21.  https://doi.org/10.1524/ract.2008.1459 CrossRefGoogle Scholar
  16. Finck N, Schlegel M, Bosbach D (2009) Sites of Lu(III) sorbed to and coprecipitated with hectorite. Environ Sci Technol 43(23):8807–8812.  https://doi.org/10.1021/es901940v CrossRefGoogle Scholar
  17. Finck N, Bouby M, Dardenne K (2018) Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. I: Insights from ICP-OES, XRD, ESEM, AsFlFFF/ICP-MS and EXAFS spectroscopy. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-1314-x
  18. Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062.  https://doi.org/10.1021/cr300370h CrossRefGoogle Scholar
  19. Gorski CA, Fantle MS (2017) Stable mineral recrystallization in low temperature aqueous systems: A critical review. Geochim Cosmochim Acta 198:439–465.  https://doi.org/10.1016/j.gca CrossRefGoogle Scholar
  20. Hazemann JL, Bérar J, Manceau A (1991) Rietveld studies of the aluminium-iron substitution in synthetic goethite. Mater Sci Forum 79-82:821–826.  https://doi.org/10.4028/www.scientific.net/MSF.79-82.821 CrossRefGoogle Scholar
  21. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  22. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138.  https://doi.org/10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  23. Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  24. Kresse G, Furthmüller J (1996b) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50.  https://doi.org/10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  25. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48:13115–13118.  https://doi.org/10.1103/PhysRevB.48.13115 CrossRefGoogle Scholar
  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  27. Kresse G, Marsman M, Furthmüller J (2016) VASP the GUIDE Available at: https://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
  28. Latta D, Gorski C, Boyanov M, O’Loughlin E, Kemner K, Scherer MM (2012) Influence of magnetite stoichiometry on UVI reduction. Environ Sci Technol 46(2):778–786.  https://doi.org/10.1021/es2024912 CrossRefGoogle Scholar
  29. Marshall TA, Morris K, Law GTW, Livens FF, Mosselmans JFW (2014) Incorporation of uranium into hematite during crystallization from ferrihydrite. Bots P, Shaw S. Environ Sci Technol 48:3724–3731.  https://doi.org/10.1021/es500212a CrossRefGoogle Scholar
  30. Maslen E, Streltsov VA, Streltsova NR, Ishizawa N (1994) Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Cryst B 50:435–441.  https://doi.org/10.1107/S0108768194002284 CrossRefGoogle Scholar
  31. Michel MF, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, a nanocrystalline material. Science 316:1726–1729.  https://doi.org/10.1126/science.1142525 CrossRefGoogle Scholar
  32. Nagano T, Mitamura H, Nakayama S, Nakashima S (1999) Formation of geothite and hematite from neodymium-containing ferryhidrite suspensions. Clays Clay Min 47:748–754.  https://doi.org/10.1346/CCMN.1999.0470609 CrossRefGoogle Scholar
  33. Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111–124.  https://doi.org/10.1016/S0304-3991(99)00017-0 CrossRefGoogle Scholar
  34. Newbury DE (2005) The new X-ray mapping: applying the silicon drift detector (SDD) for X-ray spectrometry and spectrum imaging with output count rates above 100 kHz. Microsc Microanal 11:1328–1329.  https://doi.org/10.1017/S1431927605500540 CrossRefGoogle Scholar
  35. Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science 314:638–641.  https://doi.org/10.1126/science.1131307 CrossRefGoogle Scholar
  36. Okuno H, Rouviere JL, Jouneau PH, Bayle-Guillemaud P, Daudin B (2010) Visualization of TM dopant atoms diffused out of GaN quantum dots. Appl Phys Lett 96:251908-1–251908-3.  https://doi.org/10.1063/1.3455893 CrossRefGoogle Scholar
  37. O'Loughlin E, Kelly S, Cook R, Csencsits R, Kemner K (2003) Reduction of uranium (VI) by mixed iron (II)/iron (III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol 34(4):721–727.  https://doi.org/10.1021/es0208409 CrossRefGoogle Scholar
  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  39. Powell BA, Dai Z, Zavarin M, Zhao P, Kersting AB (2011) Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environ Sci Technol 45:2698–2703.  https://doi.org/10.1021/es1033487 CrossRefGoogle Scholar
  40. Raiswell R (2011) Iron transport from the continents to the open ocean: the aging-rejuvenation cycle. Elements 7:101–106.  https://doi.org/10.2113/gselements.7.2.101 CrossRefGoogle Scholar
  41. Rollmann G, Rohrbach P, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107-1–165107-12CrossRefGoogle Scholar
  42. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577.  https://doi.org/10.1103/PhysRevB.69.165107 CrossRefGoogle Scholar
  43. Schlossmacher P, Klenov DO, Freitag B, von Harrach S, Steinbach A (2010) Nanoscale chemical compositional analysis with an innovative S/TEM-EDX system. Microsc Anal Nanotechnol Suppl S5–S8Google Scholar
  44. Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. Preparation and characterization. VCH Verlagsgesellschaft mbH: Weinheim, Germany; VCH Publishers, Inc.: New York, USA.  https://doi.org/10.1002/9783527613229
  45. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  46. Skomurski FN, Rosso KM, Krupka KM, McGrail BP (2010) Technetium incorporation into hematite (a-Fe2O3). Envion Sci Technol 44:5855–5861.  https://doi.org/10.1021/es100069x CrossRefGoogle Scholar
  47. Smith FN, Taylor C, Um W, Kruger AA (2015) Technetium incorporation into goethite (a-FeOOH): an atomic-scale investigation. Environ Sci Technol 49:13699–13707CrossRefGoogle Scholar
  48. Stegemeier JP, Reinsch BC, Lentini CJ, Dale JG, Kim CS (2015) Aggregation of nanoscale iron oxyhydroxides and corresponding effect on metal uptake, retention, and speciation: II. Temperature and time. Geochim Cosmochim Acta 148:113–129.  https://doi.org/10.1016/j.gca.2014.08.031 CrossRefGoogle Scholar
  49. Stumpf S, Stumpf T, Dardenne K, Hennig C, Foerstendorf H, Klenze R, Fanghänel T (2006) Sorption of Am(III) onto 6-line-ferrihydrite and its alteration products: investigations by EXAFS. Environ Sci Technol 40:3522–3528.  https://doi.org/10.1021/acs.est.5b03354 CrossRefGoogle Scholar
  50. Suenaga K, Okazaki T, Okunishi E, Matsumura S (2012) Detection of photons emitted from single erbium atoms in energy-dispersive X-ray spectroscopy. Nat Photonics 6:545–548.  https://doi.org/10.1038/nphoton.2012.148 CrossRefGoogle Scholar
  51. Tan X, Fang M, Wang X (2010) Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review. Molecules 15:8431–8468.  https://doi.org/10.3390/molecules15118431 CrossRefGoogle Scholar
  52. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Europium retention onto clay minerals from 25 to 150°C. Experimental measurements, spectroscopic features and sorption modelling. Geochim Cosmochim Acta 70:4563–4578.  https://doi.org/10.1016/j.gca.2006.06.1568 CrossRefGoogle Scholar
  53. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346–354.  https://doi.org/10.1063/1.469408 CrossRefGoogle Scholar
  54. Tunega D (2012) Theoretical study of properties of goethite (α-FeOOH) at ambient and high-pressure conditions. J Phys Chem C 116:6703–6713.  https://doi.org/10.1021/jp2091297 CrossRefGoogle Scholar
  55. TURBOMOLE, TURBOMOLE V7.0 (2015) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
  56. Um W, Chang HS, Icenhower JP, Lukens WW, Serne RJ, Qafoku NP, Westsik JH, Buck EC, Smith SC (2011) Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation. Environ Sci Technol 45:4904–4913.  https://doi.org/10.1021/es104343p CrossRefGoogle Scholar
  57. Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37:786–791.  https://doi.org/10.1021/es026053t CrossRefGoogle Scholar
  58. Varela M, Lupini AR, van Benthem K, Borisevich AY, Chisholm MF, Shibata N, Abe E, Pennycook SJ (2005) Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu Rev Mater Res 35:539–569.  https://doi.org/10.1146/annurev.matsci.35.102103.090513 CrossRefGoogle Scholar
  59. von Arnim M, Ahlrichs R (1999) Geometry optimization in generalized natural internal coordinates. J Chem Phys 111:9183–9190.  https://doi.org/10.1063/1.479510 CrossRefGoogle Scholar
  60. Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann HJ (2002) Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416:826–829.  https://doi.org/10.1038/416826a CrossRefGoogle Scholar
  61. Wenzel MJ, Steinle-Neumann G (2007) Nonequivalence of the octahedral sites of cubic Fe3O4 magnetite. Phys Rev B 75:214430.  https://doi.org/10.1103/PhysRevB.75.214430 CrossRefGoogle Scholar
  62. Xiu W, Guo H, Zhou X, Wanty RB, Kersten M (2018) Change of arsenite adsorption mechanism during aging of 2-line ferrihydrite in the absence of oxygen. Appl Geochem, Part B 88:149–157.  https://doi.org/10.1016/j.apgeochem.2017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Nuclear Waste Disposal, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Micro- and Nanostructure ResearchFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.School of MaterialsUniversity of ManchesterManchesterUK
  4. 4.Dalton Nuclear InstituteUniversity of ManchesterManchesterUK

Personalised recommendations