Environmental Science and Pollution Research

, Volume 25, Issue 29, pp 28808–28828 | Cite as

Chemical characterization of atmospheric particulate matter in Friuli Venezia Giulia (NE Italy) by exploratory data analysis with multisite and multivariate approach

  • Andrea MistaroEmail author
  • Alessandro Felluga
  • Flavio Moimas
  • Anna Abatangelo
  • Tazio Asquini
  • Renata Bruno
  • Lorenzo Celic
  • Michele Guidarelli
  • Arnold Pastrello
  • Anita Semec Bertocchi
Straightforward approach in Cultural Heritage and Environment studies - Multivariate Analysis and Chemometry


The chemical composition of atmospheric particulate (PM10) in the Friuli Venezia Giulia (FVG) region (NE Italy) has been characterized for the first time with the help of exploratory data analysis (EDA) techniques (uni-, bi-, and multivariated, i.e., principal components analysis), molecular and elemental diagnostic ratios, and seasonal trends. Despite that the available analytical data was limited to the parameters routinely analyzed on PM10 by ARPA FVG (11 elements and 16 PAH congeners), the large number of samples and of measured chemical parameters, together with the applied techniques of data analysis, allowed us to extract useful latent information from the dataset, resulting in a greater knowledge of both regional and local features. Specifically, we succeeded in matching data patterns to the known pollution sources of some sampling stations, both industrial (two secondary fusion steelworks and one coke oven) and urban (traffic and domestic heating), and in defining the mainly urban or mainly industrial feature of some questionable sampling stations. This is of paramount importance to check for possible industrial inputs in urban stations, allowing policymakers to implement the most appropriate response.


PM10 Chemical characterization Multivariate analysis Diagnostic ratios PCA Friuli Venezia Giulia Steelworks Coke oven 



We thank all colleagues that contributed to data sampling, collection, and validation, namely Marco Bellini, Valter Cecchin, Agostino Colla, Gianmaria Cossio, Ivano De Simon, Lorenzo Fragiacomo, Rossana Michelini, Angela Roman Rioni, and Marco Visintin. We thank Alessandro Acquavita (ARPA FVG) and Alan Colli (University of Cambridge) for useful insights on the manuscript preparation.


  1. 2004/107/CE (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient airGoogle Scholar
  2. 2008/50/CE (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for EuropeGoogle Scholar
  3. Acquavita A, Predonzani S, Mattassi G, Rossin P, Tamberlich F, Falomo J, Valic I (2010) Heavy metal contents and distribution in coastal sediments of the Gulf of Trieste (Northern Adriatic Sea, Italy). Water Air Soil Pollut 211:95–111CrossRefGoogle Scholar
  4. Agrawal H, Malloy Q, Welch WA, Miller JW, Cocker DR (2008) In-use gaseous and particulate emissions from a modern oceangoing container vessel. Atmos Environ 42:504–5510Google Scholar
  5. Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jaffrezo JL (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys—part 1: concentrations, sources and gas/particle partitioning. Atmos Environ 42:43–54CrossRefGoogle Scholar
  6. ARPA FVG (2013) Relazionesulla Qualità dell’aria della Zona industriale di Cividale-Moimacco. Italian). Accessed on 15 September 2017
  7. ARPA FVG (2015) Relazione sulla Qualità dell’aria a Trieste per il sito RFI. Italian). Accessed on 15 September 2017
  8. Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmos Environ 43:2770–2780CrossRefGoogle Scholar
  9. Astel AM, Giorgini L, Mistaro A, Pellegrini I, Cozzutto S, Barbieri P (2013) Urban BTEX spatiotemporal exposure assessment by chemometric expertise. Water Air Soil Pollut 224(1503):1503. CrossRefGoogle Scholar
  10. Becagli S, Sferlazzo DM, Pace G, di Sarra A, Bommarito C, Calzolai G, Ghedini C, Lucarelli F, Meloni D, Monteleone F, Severi M, Traversi R, Udisti R (2012) Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean. Atmos Chem Phys 12:3479–3492CrossRefGoogle Scholar
  11. Behymer TD, Hites RA (1988) Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. Environ Sci Technol 22:1311–1319CrossRefGoogle Scholar
  12. Bidleman TF, Billings WN, Foreman WT (1986) Vapor-particle partitioning of semivolatile organic compounds: estimates from field collections. Environ Sci Technol 20:1038–1043CrossRefGoogle Scholar
  13. Bourotte C, Forti M, Taniguchi S, Bicego M, Lotufo P (2005) A wintertime study of PAHs in fine and coarse aerosols in Sao Paulo city, Brazil. AtmosEnviron 39:3799–3811Google Scholar
  14. Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97CrossRefGoogle Scholar
  15. Burke S (2001) Missing values, outliers, robust statistics & non-parametric methods. LC.GC Europe Online Supplement, statistics and data analysis 2.0. RHM Technology Ltd, High Wycombe, Buckinghamshire, pp 19–24Google Scholar
  16. Canepari S (2010) Influenza del traffico veicolare sull’inquinamento atmosferico in aree urbane: contributo delle sorgenti non combustive alle concentrazioni elementari nel particolato. In: VI Rapporto sulla qualità dell’ambiente urbano – Focus sulle buone pratiche. ISPRA, Roma, pp 137–150 (in Italian)Google Scholar
  17. Cecinato A (1997) Polynuclear aromatic hydrocarbons (PAH), benz(a)pyrene (BaPY) and nitrated-PAH (NPAH) in suspended particulate matter. Ann Chim 87:483–496Google Scholar
  18. ChattopadhyayK, JohnsonD, YoungJ, VieiraJ, BachenheimerS, KumarS (2014) Evaluation of air emissions in steel plants with focus on heavy metals emissions. Accessed November 2016
  19. Chen SC, Liao CM (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123CrossRefGoogle Scholar
  20. Costa HJ, Sauer JTC (2005) Forensic approaches and considerations in identifying PAH background. Environ Forens 6:9–16CrossRefGoogle Scholar
  21. Culhane F (1973)Air pollution control—electric arc melting furnace. In: Noll K, Duncan J (eds) Industrial air pollution control. Ann Arbor science pub., pp 139–152.
  22. Daisey JM, Leyko MA, Kneip TJ (1979) Source identification and allocation of polynuclear aromatic hydrocarbon compounds in the New York City aerosol: methods and applications. In: Jones PW, Leber P (eds) Polynuclear aromatic hydrocarbons. 3rd International Symposium on Chemistry and Biology – Carcinogenesis and Mutagenesis, Ann Arbor Science, MIGoogle Scholar
  23. Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42(35):8139–8149CrossRefGoogle Scholar
  24. Goetz F (1980) The mechanism of BOF fume formation. Open Access Dissertations and Theses. Paper 2794. McMaster University, Hamilton, Ontario. Accessed 10 Oct 2017
  25. Hammer Ø, HarperDAT, PaulDR (2001) PAST: palaeontological statistics, software package for education and data analysis. Palaeontol Electron 4:9Google Scholar
  26. HammerØ (2011) PAST paleontological statistics, version 2.06, reference manualGoogle Scholar
  27. Huber PJ (2011) Robust statistics. Springer, Berlin, Heidelberg, pp 1248–1251Google Scholar
  28. Iijima A, Sato K, Fujitani Y, Fujimori E, Saito Y, Tanabe K, Ohara T, Kozawa K, Furuta N (2009) Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan. Environ Chem 6(2):122–132. CrossRefGoogle Scholar
  29. Iijima A, Sato K, Yano K, Kato M, Kozawa K, Furuta N (2008) Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ Sci Technol 42(8):2937–2942CrossRefGoogle Scholar
  30. Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, Kinney PL, Miller RL (2010) Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int J Environ Res Public Health 7(5):1889–1900CrossRefGoogle Scholar
  31. Li YM, Pan YP, Wang YS, Wang YF, Li XR (2012) Chemical characteristics and sources of trace metals in precipitation collected from a typical industrial city in Northern China. Huan Jing Ke Xue 33(11):3712–3717 (in Chinese)Google Scholar
  32. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402CrossRefGoogle Scholar
  33. López JM, Callén MS, Murillo R, García T, Navarro MV, de la Cruz MT, Mastral AM (2005) Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environ Res 99:58–67CrossRefGoogle Scholar
  34. Luckey TD, Venugopal B (1977) Metal toxicity in mammals. Plenum Press, New YorkGoogle Scholar
  35. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60CrossRefGoogle Scholar
  36. Mislin H, Ravera O (1986) Cadmium in the environment. Experientia Supplementum vol. 50. Birkhäuser, BaselGoogle Scholar
  37. Mucci G (2012) Inquinamento da benzene in atmosfera urbana: evoluzione del fenomeno e distribuzione nella città di Trieste. Università degli Studi di Trieste, Trieste (in Italian)Google Scholar
  38. Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300CrossRefGoogle Scholar
  39. Pandolfi M, Gonzalez-Castanedo Y, Alasuey A, de la Rosa JD, Mantilla E, Sanchez de la Campa A, Querol X, Pey J, Amato F, Moreno T (2011) Source apportionment of MP10 and PM2,5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environ Sci Pollut Res 18(2):260–269CrossRefGoogle Scholar
  40. Peng C, Chen WP, Liao XL, Wang ME, Ouyang ZY, Jiao WT, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Beijing: status, sources, distribution and potential risk. Environ Pollut 159:802–808CrossRefGoogle Scholar
  41. Pirovano G, Colombi C, Balzarini A, Riva GM, Gianelle V, Lonati G (2015) PM2.5 source apportionment in Lombardy (Italy): comparison of receptor and chemistry-transport modelling results. Atmos Environ 106:56–70CrossRefGoogle Scholar
  42. PM2016 (2016) 7th Atmospheric Particulate National Congress. Book of Abstracts. Roma (in Italian)Google Scholar
  43. Poluzzi V, Trentini A, Scotto F, Ricciardelli I, Ferrari S, Maccone C, Bacco D, Zigola C, Bonafè G, Ugolini P, Bertacci G, Pietrogrande MC, Visentin M,Gilardoni S, Paglione M, Rinaldi M, Facchini MC (2015) Preliminary results of the project “Supersito” concerningthe atmospheric aerosolo composition in Emilia-Romagna region, Italy: PM source apportionment and aerosol size distribution. In: Sustainable Develpoment. WIT Press Wessex Institute of Technology, Ashurst, pp 689–698Google Scholar
  44. Pongpiachan S, Bualert S, Sompongchaiyakul P, Kositanont C (2009) Factors affecting sensitivity and stability of polycyclic aromatic hydrocarbons determined by gas chromatography quadrupole ion trap mass spectrometry. Anal Lett 42:2106–2130CrossRefGoogle Scholar
  45. Pongpiachan S, Hattayanone M, Choochuay C, Mekmok N, Wuttjak N, Ketratanakul A (2015) Enhanced PM10 bounded PAHs from shipping emissions. Atmos Environ 108:13–19CrossRefGoogle Scholar
  46. Pongpiachan S, Iijima A (2016) Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand). Environ Sci Pollut Res 23:2948–2961CrossRefGoogle Scholar
  47. Pongpiachan S, Hattayanone M, Cao J (2017a) Effect of agricultural waste burning season on PM2.5-bound polycyclic aromatic hydrocarbons (PAH) levels in Northern Thailand. Atmos Pollut Res 8:1069–1080. CrossRefGoogle Scholar
  48. Pongpiachan S, Hattayanone M, Suttinun O, Khumsup C, Kittikoon I, Hirunyatrakul P, Cao J (2017b) Assessing human exposure to PM10-bound polycyclic aromatic hydrocarbons during fireworks displays. Atmospheric Pollution Research 8:816–827CrossRefGoogle Scholar
  49. Pongpiachan S, Hattayanone M, Tipmanee D, Suttinun O, Khumsup C, Kittikoon I, Hirunyatrakul P (2017c) Chemical characterization of polycyclic aromatic hydrocarbons (PAHs) in 2013 Rayong oil spill-affected coastal areas of Thailand. Environ Pollut 233:992–1002. CrossRefGoogle Scholar
  50. Puxbaum H (1991) Metal compounds in the atmosphere. In: Merian E (ed) Metals and their compounds in the environment, Wiley-VHC, pp257–86Google Scholar
  51. Ravindra K, Bencs L, Wauters E, Dehoog J, Deutsch F, Roekens E et al (2006) Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40:771–785CrossRefGoogle Scholar
  52. Ravindra K, Sokhi R, Vangrieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  53. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Treatise on geochemistry (vol. 3), Elsevier, pp. 1–64Google Scholar
  54. Stogiannidis E, Laane R (2015) Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev Environ Contam Toxicol 234:49–134Google Scholar
  55. Tricarico V (2005) Gradienti spazio-temporali delle concentrazioni del Benzo(a)Pirene ed altri sei IPA, della loro somma e composizione relativa. Misure condotte nell’area urbana di Firenze durante l’anno 2004. Boll Chim Igien 56:73–77 (in Italian)Google Scholar
  56. Tolloi A, Briguglio SC, Barbieri G, Bellini M, Liguori L, Pellegrini I, Colugnati L, Pastrello A, Semec Bertocchi A, Bruno R, Mistaro A, Adami G, Licen S, Barbieri P (2015) OPC, anemology, gravimetric and speciative analyses for characterizing PM impacts on an inhabited area close to an industrial hot spot. European Aerosol Conference, MilanoGoogle Scholar
  57. Tositti L, Brattich E, Masiol M, Zappoli S (2014) Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ Sci Pollut Res 21:872–890CrossRefGoogle Scholar
  58. Tuttitalia (2017) (in Italian). Accessed 15 September 2017
  59. UNI EN 12341:1999 Air Quality—determination of the PM10 fraction of suspended particulate matter—reference method and field test procedure to demonstrate reference equivalence of measurement methodsGoogle Scholar
  60. UNI EN 15549:2008 Air Quality—standard method for the measurement of the concentration of benzo[a]pyrene in ambient airGoogle Scholar
  61. UNI EN 14902:2005 Ambient air quality—standard method for the measurement of Pb, Cd, As and Ni in the PM10 fraction of suspended particulate matterGoogle Scholar
  62. USEPA NC EPA-600/R-93/089 (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. US Environmental Protection Agency, Research Triangle ParkGoogle Scholar
  63. Viana M, Amato F, Alastuey A, Querol X, Saul G, Herce-Garraleta D, Fernandez-Patier R (2009) Chemical tracers of particulate emissions from commercial shipping. Environ Sci Technol 43(19):7472–7477CrossRefGoogle Scholar
  64. Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, de Vlieger I, van Aardenne J (2014) Impact of transport emissions on coastal air quality in Europe. Atmos Environ 90:96–105CrossRefGoogle Scholar
  65. Wedepohl KH (1995) The composition of the continental crust. Geochem Cosmochim Acta 59(7):1217–1232CrossRefGoogle Scholar
  66. WHO (2017) Evolution of WHO air quality guidelines: past, present and future. WHO Regional Office for Europe, Copenhagen ISBN 9789289052306Google Scholar
  67. Wilcoxon F, Wilcox RA (1964) Some rapid approximate statistical procedures. Lederle LaboratoriesGoogle Scholar
  68. Wilson JG, Kingham S, Pearce J, Sturman AP (2005) A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmos Environ 39:6444–6462CrossRefGoogle Scholar
  69. Wilson JG, Kingham S, Pearce J, Sturman AP (2006) Intraurban variations of PM10 air pollution in Christchurch, New Zealand: implications for epidemiological studies. Sci Total Environ 367:559–572CrossRefGoogle Scholar
  70. Wongphatarakul V, Friedlander SK, Pinto JP (1998) A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Technol 32:3926–3934CrossRefGoogle Scholar
  71. Yunker MB, Macdonald RW (1995) Composition and origin of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea shelf. Arctic 48:118–129CrossRefGoogle Scholar
  72. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515CrossRefGoogle Scholar
  73. Zhang H, Wang Z, Zhang Y, Ding M, Li L (2015) Identification of traffic related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway. Sci Total Environ 521-522C:160–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Mistaro
    • 1
    • 2
    Email author
  • Alessandro Felluga
    • 1
    • 3
  • Flavio Moimas
    • 1
    • 4
  • Anna Abatangelo
    • 1
    • 2
  • Tazio Asquini
    • 1
    • 2
  • Renata Bruno
    • 1
    • 2
  • Lorenzo Celic
    • 1
    • 2
  • Michele Guidarelli
    • 1
    • 2
  • Arnold Pastrello
    • 1
    • 2
  • Anita Semec Bertocchi
    • 1
    • 2
  1. 1.Agenzia Regionale per la Protezione dell’Ambiente (ARPA FVG) del Friuli Venezia GiuliaPalmanovaItaly
  2. 2.ARPA FVG Laboratorio Acque Marino-Costiere e Qualità dell’AriaTriesteItaly
  3. 3.ARPA FVG Direzione Tecnico ScientificaTriesteItaly
  4. 4.ARPA FVG Qualità dell’AriaPalmanovaItaly

Personalised recommendations