Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series

  • Aliaksandr Kolbas
  • Natallia Kolbas
  • Lilian Marchand
  • Rolf Herzig
  • Michel Mench
Research Article

Abstract

The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13–1020 mg Cu kg−1) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC50) of morphological parameters ranged between 203 and 333 mg Cu kg−1 soil, corresponding to 290–430 μg Cu L−1 in the soil pore water, and 20 ± 5 mg Cu kg−1 DW in the shoots. The EC10 for shoot Cu concentration (13–15 mg Cu kg−1 DW) coincided to 166 mg Cu kg−1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC10: 23 and 51 mg Cu kg−1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 μg Cu L−1 in the soil pore water.

Keywords

Antioxidant capacity Biomarker Carotenoid Helianthus annuus L. Phytotoxicity Phytoremediation 

Abbreviations

ABTS

2,2′-Azinobis (3-ethylbenzothiazoline 6-sulfonate)

AOA

Antioxidant activity

APX

Ascorbate peroxidase

AsA

Ascorbate

Carot

Carotenoid content

CEC

Cation exchange capacity

Chl a

Chlorophyll a content

Chl b

Chlorophyll b content

ChlTOT

Total chlorophyll content

CuSH

Shoot Cu concentration

CuSPW

Total Cu concentration in the soil pore water

CuTOT

Total soil Cu

DHAR

Dehydroascorbate reductase

DMA

Dimethylamine

DMF

N,N-dimethylformamide

DPPH

2,2-Diphenyl-1-picrylhydrazyl

DRC

Dose-response curve

DW SH

Shoot dry weight yield

DW RT

Root dry weight yield

EC

Effective concentration

EL

Epicotyl length

FW

Fresh weight

FRAP

Ferric-reducing antioxidant potential

GR

Glutathione reductase

GSH

Reduced glutathione

GSSG

Oxidized glutathione

HL

Hypocotyl length

IRT

Iron-regulated transporter

MDHAR

Monodehydroascorbate reductase

NA

Nicotianamine

OM

Organic matter

ORAC

Oxygen radical absorption capacity

ROS

Reactive oxygen species

SL

Stem length

SOD

Superoxide dismutase

S/R

Shoot dry weight yield: root dry weight yield ratio

TAC

Total antioxidant capacity

TE

Trace element

TEAC

Trolox equivalent antioxidant capacity

TF

Translocation factor

TLA

Total leaf area

ZIP

Zinc- and iron-regulated transporter

Notes

Acknowledgements

This work was financially supported by ADEME, Department of Urban Brownfields and Polluted Sites, Angers, France, the European Commission under the Seventh Framework Programme for Research (FP7-KBBE-266124, GREENLAND), the French National Research Agency (PHYTOCHEM ANR-13-CDII-0005-01), and the ERA-Net FACCE SURPLUS (project INTENSE; http://faccesurplus.org/research-projects/intense/). This study has been carried out in the frameworks of the Cluster of Excellence Labex COTE and the INRA Ecotox. Authors give special thanks to Dr. Jean-Paul Maalouf for his technical assistance. Dr. A. Kolbas is grateful to Galina Brutcova for English editing.

Supplementary material

11356_2018_1837_MOESM1_ESM.docx (131 kb)
ESM 1 (DOCX 130 kb)

References

  1. Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239:103–111.  https://doi.org/10.1023/A:1014995321560 CrossRefGoogle Scholar
  2. Batty C, Baker AJM, Wheeler BD, Curtis CD (2000) The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Ann Bot 86:647–653.  https://doi.org/10.1006/anbo.2000.1191 CrossRefGoogle Scholar
  3. Bes C, Mench M, Aulen M, Gasté H, Taberly J (2010) Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330:267–280.  https://doi.org/10.1007/s11104-009-0198-4 CrossRefGoogle Scholar
  4. Boojar MMA, Goodarzi F (2007) The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere 67:2138–2147.  https://doi.org/10.1016/j.chemosphere.2006.12.071 CrossRefGoogle Scholar
  5. Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816.  https://doi.org/10.1111/j.1469-8137.2009.02846.x CrossRefGoogle Scholar
  6. Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123:229–238.  https://doi.org/10.1016/S0269-7491(02)00374-3 CrossRefGoogle Scholar
  7. Cicatelli A, Guarino F, Castiglione S (2017) Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants. Environ Sci Pollut Res 24:10131–10138.  https://doi.org/10.1007/s11356-017-8655-8 CrossRefGoogle Scholar
  8. Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517.  https://doi.org/10.1111/j.1399-3054.2000.1100413.x CrossRefGoogle Scholar
  9. Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris. Copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876.  https://doi.org/10.1078/0176-1617-00676 CrossRefGoogle Scholar
  10. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon J-M (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774.  https://doi.org/10.1021/jf803011r CrossRefGoogle Scholar
  11. Feigl G, Kumar D, Lehotai N, Pető A, Molnár Á, Rácz É, Ördög A, Erdei L, Kolbert Z, Laskay G (2015) Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: growth inhibition, oxidative stress and photosynthetic damage. Acta Biol Hung 66:205–221.  https://doi.org/10.1556/018.66.2015.2.7 CrossRefGoogle Scholar
  12. Gerola AP, Tsubone TM, Santana A, de Oliveira HP, Hioka N, Caetano W (2011) Properties of chlorophyll and derivatives in homogeneous and microheterogeneous systems. J Phys Chem B 115:7364–7373.  https://doi.org/10.1021/jp201278b CrossRefGoogle Scholar
  13. Gruber BR, Davies LRR, Kruger EL, McManus PS (2009) Effects of copper-based fungicides on foliar gas exchange in tart cherry. Plant Dis 93:512–518.  https://doi.org/10.1094/PDIS-93-5-0512 CrossRefGoogle Scholar
  14. Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. The Crop Journal 4:83–91.  https://doi.org/10.1016/j.cj.2015.11.003 CrossRefGoogle Scholar
  15. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266.  https://doi.org/10.1016/j.pbi.2009.05.006 CrossRefGoogle Scholar
  16. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722.  https://doi.org/10.1046/j.0016-8025.2001.00721.x CrossRefGoogle Scholar
  17. Herzig R, Nehnevajova E, Pfistner C, Schwitzguébel J-P, Ricci A, Keller C (2014) Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland. Int J Phytoremediation 16:735–754.  https://doi.org/10.1080/15226514.2013.856846 CrossRefGoogle Scholar
  18. Hewitt E (1966) Sand and water culture methods used in the study of plant nutrition. The Eastern press Ltd, LondonGoogle Scholar
  19. Hossain PP, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012, article ID 872875, 37 pages.  https://doi.org/10.1155/2012/872875
  20. Hötzer B, Ivanov R, Bauer P, Jung G (2012) Investigation of copper homeostasis in plant cells by fluorescence lifetime imaging microscopy. Plant Signal Behav 7:521–523.  https://doi.org/10.4161/psb.19561 CrossRefGoogle Scholar
  21. INRA LAS (2014) Sols: méthodes applicables aux sols. Available at https://www6npcinrafr/las/Methodes-d-analyse/Sols Access on December 26, 2017
  22. ISO (2012) Soil quality - Determination of the effects of pollutants on soil flora, Part 2: Effects of chemicals on the emergence and growth of higher plants, ISO 11269–2:2012, Geneva. https://www.iso.org/standard/51382.html
  23. Japenga J, Koopmans GF, Song J, Romkens PFAM (2007) A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils. Int J Phytoremediation 9:115–132.  https://doi.org/10.1080/15226510701232773 CrossRefGoogle Scholar
  24. Jones S, Bardos P, Kidd PS, Mench M, de Leij F, Hutchings T, Cundy A, Joyce C, Soja G, Friesl-Hanl W, Herzig R, Menger P (2016) Biochar and compost amendments enhance copper immobilisation and support plant growth in a contaminated soil. J Environ Manag 171:101–112.  https://doi.org/10.1016/j.jenvman.2016.01.024 CrossRefGoogle Scholar
  25. Kabata-Pendias A, Pendias H (2011) Trace elements in soils and plants, 4th edn. Boca Raton CRC Press, Boca RatonGoogle Scholar
  26. Kato M, Shimizu S (1987) Chlorophyll metabolism in higher-plants. VII. Chlorophyll degradation in senescing tobacco leaves—phenolic-dependent peroxidative degradation. Can J Bot - Rev Can Bot 65:729–735.  https://doi.org/10.1139/b87-097 CrossRefGoogle Scholar
  27. Kidd P, Mench M, Álvarez-López V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Müller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace-element-contaminated soils. Int J Phytoremediation 17:1005–1037.  https://doi.org/10.1080/15226514.2014.1003788 CrossRefGoogle Scholar
  28. Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208.  https://doi.org/10.1023/B:PLSO.0000020972.18777.99 CrossRefGoogle Scholar
  29. Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840–848.  https://doi.org/10.1614/WT-06-161.1 CrossRefGoogle Scholar
  30. Kolbas A, Mench M, Herzig R, Nehnevajova E, Bes CM (2011) Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower. Int J Phytoremediation 13(Suppl 1):55–76.  https://doi.org/10.1080/15226514.2011.568536 CrossRefGoogle Scholar
  31. Kolbas A, Mench M, Marchand L, Herzig R, Nehnevajova E (2014) Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: potential uses for biomonitoring of Cu exposure and phytoremediation. Plant Soil 376:377–397.  https://doi.org/10.1007/s11104-013-1974-8 CrossRefGoogle Scholar
  32. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009) Toxic effects of Cu(2+) on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Sci Total Environ 407:4616–4621.  https://doi.org/10.1016/j.scitotenv.2009.04.041 CrossRefGoogle Scholar
  33. Korpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res Genet Toxicol Environ Mutagen 719:29–34.  https://doi.org/10.1016/j.mrgentox.2010.10.003 CrossRefGoogle Scholar
  34. Küpper H, Kroneck PMH (2005) Heavy metal uptake by plants and cyanobacteria. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 97–142Google Scholar
  35. Küpper H, Setlik I, Setlikova E, Ferimazova N, Spiller M, Küpper FC (2003) Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30:1187–1196.  https://doi.org/10.1071/FP03129 CrossRefGoogle Scholar
  36. Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.) Plant Soil 200:241–250.  https://doi.org/10.1023/A:100434690 CrossRefGoogle Scholar
  37. Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682.  https://doi.org/10.1016/j.plaphy.2010.05.005 CrossRefGoogle Scholar
  38. Lin JX, Jiang WS, Liu DH (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.) Bioresour Technol 86:151–155.  https://doi.org/10.1016/S0960-8524(02)00152-9 CrossRefGoogle Scholar
  39. Liotenberg S, Steunou AS, Durand A, Bourbon ML, Bollivar D, Hansson M, Astier C, Ouchane S (2015) Oxygen-dependent copper toxicity: targets in the chlorophyll biosynthesis pathway identified in the copper efflux ATPase CopA deficient mutant. Environ Microbiol 17:1963–1976.  https://doi.org/10.1111/1462-2920.12733 CrossRefGoogle Scholar
  40. Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148.  https://doi.org/10.1016/j.biotechadv.2016.07.003 CrossRefGoogle Scholar
  41. Lyubenova L, Nehnevajova E, Herzig R, Schroeder P (2009) Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environ Sci Pollut Res Int 16:573–581.  https://doi.org/10.1007/s11356-009-0175-8 CrossRefGoogle Scholar
  42. MacDonald-Wicks LK, Wood LG, Garg ML (2006) Methodology for the determination of biological antioxidant capacity in vitro: a review. J Sci Food Agric 86:2046–2056.  https://doi.org/10.1002/jsfa CrossRefGoogle Scholar
  43. Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129.  https://doi.org/10.1007/BF02197805 CrossRefGoogle Scholar
  44. Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. Sci Total Environ 307:239–257.  https://doi.org/10.1016/S0048-9697(02)00609-5 CrossRefGoogle Scholar
  45. Marchand L, Lamy P, Bert V, Quintela-Sabaris C, Mench M (2016) Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series. Environ Sci Pollut Res 23:3104–3119.  https://doi.org/10.1007/s11356-015-4646-9 CrossRefGoogle Scholar
  46. Markert B, Oehlmann J, Roth M (1997) Biomonitoring von Schwermetallen – eine kritische Bestandsaufnahme (biomonitoring of heavy metals—a critical review). Z Ökologie u Naturschutz 6:1–8Google Scholar
  47. Marschner H (2011) Mineral nutrition of higher plants, 3rd edn. Academic press, LondonGoogle Scholar
  48. Meers E, Ruttens A, Geebelen W, Vangronsveld J, Samson R, Vanbroekhoven K, Vandegehuchte M, Diels L, Tack FMG (2006) Potential use of the plant antioxidant network for environmental exposure assessment of heavy metals in soils. Environ Monit Assess 120:243–267.  https://doi.org/10.1007/s10661-005-9059-7 CrossRefGoogle Scholar
  49. Mench M, Lepp N, Bert V, Schwitzguébel J-P, Gawronski SW, Schroeder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859. J Soils Sediments 10:1039–1070.  https://doi.org/10.1007/s11368-010-0190-x CrossRefGoogle Scholar
  50. Mendoza-Soto AB, Sanchez F, Hernandez G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 3:105.  https://doi.org/10.3389/fpls.2012.00105 CrossRefGoogle Scholar
  51. Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Goetz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731.  https://doi.org/10.1104/pp.109.144675 CrossRefGoogle Scholar
  52. Mocquot B, Vangronsveld J, Clijsters H, Mench M (1996) Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 182:287–300.  https://doi.org/10.1007/BF00029060 CrossRefGoogle Scholar
  53. Moreno-Jimenez E, Beesley L, Lepp NW, Dickinson NM, Hartley W, Clemente R (2011) Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Environ Pollut 159:3078–3085.  https://doi.org/10.1016/j.envpol.2011.04.004 CrossRefGoogle Scholar
  54. Nehnevajova E, Herzig R, Bourigault C, Bangerter S, Schwitzguébel J-P (2009) Stability of enhanced yield and metal uptake by sunflower mutants for improved phytoremediation. Int J Phytoremediation 11:329–346.  https://doi.org/10.1080/15226510802565394 CrossRefGoogle Scholar
  55. Nehnevajova E, Lyubenova L, Herzig R, Schroeder P, Schwitzguébel J-P, Schmuelling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ Exp Bot 76:39–48.  https://doi.org/10.1016/j.envexpbot.2011.10.005 CrossRefGoogle Scholar
  56. Oustrière N, Marchand L, Lottier N, Motelica M, Mench M (2017) Long-term Cu stabilization and biomass yields of Giant reed and poplar after adding a biochar, alone or with iron grit, into a contaminated soil from a wood preservation site. Sci Total Environ 579:620–627.  https://doi.org/10.1016/j.scitotenv.2016.11.048 CrossRefGoogle Scholar
  57. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157.  https://doi.org/10.1021/jf051960d CrossRefGoogle Scholar
  58. Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340.  https://doi.org/10.1038/nchembio.166 CrossRefGoogle Scholar
  59. Panou-Filotheou H, Bosabalidis AM, Karataglis S (2001) Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp hirtum). Ann Botany 88:207–214.  https://doi.org/10.1006/anbo.2001.1441 CrossRefGoogle Scholar
  60. Pätsikkä E, Kairavuo M, Sersen F, Aro EM, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367.  https://doi.org/10.1104/pp.004788 CrossRefGoogle Scholar
  61. Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A (2015) Temporal aspects of copper homeostasis and its crosstalk with hormones. Front Plant Sci 6:255.  https://doi.org/10.3389/fpls.2015.00255 CrossRefGoogle Scholar
  62. Perry JJP, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262.  https://doi.org/10.1016/j.bbapap.2009.11.004 CrossRefGoogle Scholar
  63. Pilon M (2011) Moving copper in plants. New Phytol 192:305–307.  https://doi.org/10.1111/j.1469-8137.2011.03869.x CrossRefGoogle Scholar
  64. Printz B, Lutts S, Hausman J-F, Sergeant K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci 7:601.  https://doi.org/10.3389/fpls.2016.00601 CrossRefGoogle Scholar
  65. Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302.  https://doi.org/10.1021/jf0502698 CrossRefGoogle Scholar
  66. Qi XM, Li PJ, Liu W, Xie LJ (2006) Multiple biomarkers response in maize (Zea mays L.) during exposure to copper. J Environ Sci (China) 18:1182–1188.  https://doi.org/10.1016/S1001-0742(06)60059-4 CrossRefGoogle Scholar
  67. Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919–932.  https://doi.org/10.1089/ars.2012.5084 CrossRefGoogle Scholar
  68. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237.  https://doi.org/10.1016/S0891-5849(98)00315-3 CrossRefGoogle Scholar
  69. Rivelli AR, De Maria S, Puschenreiter M, Gherbin P (2012) Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Int J Phytoremediation 14:320–334.  https://doi.org/10.1080/15226514.2011.620649 CrossRefGoogle Scholar
  70. Rizwan M, Ali S, Rizvi H, Rinklebe J, Tsang DCW, Meers E, Ok YS, Ishaque W (2016) Phytomanagement of heavy metals in contaminated soils using sunflower: a review. Crit Rev Env Sci Technol 46:1498–1528.  https://doi.org/10.1080/10643389.2016.1248199 CrossRefGoogle Scholar
  71. Saglam A, Yetissin F, Demiralay M, Terzi R (2016) Copper stress and responses in plants. In: Parvaiz A (ed) Plant metal interaction, emerging remediation techniques. Elsevier, Amsterdam, pp 21–40.  https://doi.org/10.1016/B978-0-12-803158-2.00002-3 CrossRefGoogle Scholar
  72. Sanchez-Pardo B, Fernandez-Pascual M, Zornoza P (2014) Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. J Plant Res 127:119–129.  https://doi.org/10.1007/s10265-013-0583-1 CrossRefGoogle Scholar
  73. Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50.  https://doi.org/10.1016/j.tplants.2008.10.007 CrossRefGoogle Scholar
  74. Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349.  https://doi.org/10.1007/s11104-005-8815-3 CrossRefGoogle Scholar
  75. Shi J, Yuan X, Chen X, Wu B, Huang Y, Chen Y (2011) Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF. Biol Trace Elem Res 141:294–304.  https://doi.org/10.1007/s12011-010-8710-5 CrossRefGoogle Scholar
  76. Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta Mol Cell Res 1823:1553–1567.  https://doi.org/10.1016/j.bbamcr.2012.05.016 CrossRefGoogle Scholar
  77. Singh S, Saxena R, Pandey K, Bhatt K, Sinha S (2004) Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere 57:1663–1673.  https://doi.org/10.1016/j.chemosphere.2004.07.049 CrossRefGoogle Scholar
  78. Sun BY, Kan SH, Zhang YZ, Deng SH, Wu J, Yuan H, Qi H, Yang G, Li L, Zhang XH, Xiao H, Wang YJ, Peng H, Li YW (2010) Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. J Hazard Mater 183:833–838.  https://doi.org/10.1016/j.jhazmat.2010.07.102 CrossRefGoogle Scholar
  79. Thomas G, Stärk HJ, Wellenreuther G, Dickinson BC, Küpper H (2013) Effects of nanomolar copper on water plants—comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions. Aquat Toxicol 140-141:27–36.  https://doi.org/10.1016/j.aquatox.2013.05.008 CrossRefGoogle Scholar
  80. Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39.  https://doi.org/10.1016/j.plaphy.2012.01.006 CrossRefGoogle Scholar
  81. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17.  https://doi.org/10.1007/s10311-009-0268-0 CrossRefGoogle Scholar
  82. Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago M (ed) Plants and the chemical elements. VCH Verlagsgesellshaft, Weinheim, pp 149–177CrossRefGoogle Scholar
  83. Verdejo J, Ginocchio R, Sauvé S, Salgado E, Neaman A (2015) Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicol Environ Saf 122:171–177.  https://doi.org/10.1016/j.ecoenv.2015.07.026 CrossRefGoogle Scholar
  84. Verdejo J, Ginocchio R, Sauvé S, Mondaca P, Neaman A (2016) Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile. J Soil Sci Plant Nutr 16:154–158.  https://doi.org/10.4067/S0718-95162016005000011 Google Scholar
  85. Verdoni N, Mench M, Cassagne C, Bessoule JJ (2001) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388.  https://doi.org/10.1002/etc.5620200220 CrossRefGoogle Scholar
  86. Vulkan R, Zhao FJ, Barbosa-Jefferson V, Preston S, Paton GI, Tipping E, McGrath SP (2000) Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environ Sci Technol 34:5115–5121.  https://doi.org/10.1021/es0000910 CrossRefGoogle Scholar
  87. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430.  https://doi.org/10.1071/FP08288 CrossRefGoogle Scholar
  88. Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69.  https://doi.org/10.1186/1471-2229-11-69 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aliaksandr Kolbas
    • 1
    • 2
  • Natallia Kolbas
    • 2
  • Lilian Marchand
    • 1
  • Rolf Herzig
    • 3
  • Michel Mench
    • 1
    • 4
  1. 1.BIOGECO, INRA, Univ. BordeauxPessac cedexFrance
  2. 2.Brest State University named after A.S. PushkinBrestBelarus
  3. 3.Phytotech FoundationBerneSwitzerland
  4. 4.INRA, UMR BIOGECO 1202, Diversity and Functioning of CommunitiesUniversity of BordeauxPessac cedexFrance

Personalised recommendations