Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 17690–17715 | Cite as

Polar pesticide contamination of an urban and peri-urban tropical watershed affected by agricultural activities (Yaoundé, Center Region, Cameroon)

  • Perrine BranchetEmail author
  • Emmanuelle Cadot
  • Hélène Fenet
  • David Sebag
  • Benjamin Ngounou Ngatcha
  • Valérie Borrell-Estupina
  • Jules Remy Ndam Ngoupayou
  • Ives Kengne
  • Jean-Jacques Braun
  • Catherine Gonzalez
Research Article

Abstract

Urban agriculture is crucial to local populations, but the risk of it contaminating water has rarely been documented. The aim of this study was to assess pesticide contamination of surface waters from the Méfou watershed (Yaoundé, Cameroon) by 32 selected herbicides, fungicides, and insecticides (mainly polar) according to their local application, using both grab sampling and polar organic compounds integrative samplers (POCIS). Three sampling campaigns were conducted in the March/April and October/November 2015 and June/July 2016 rainy seasons in urban and peri-urban areas. The majority of the targeted compounds were detected. The quantification frequencies of eight pesticides were more than 20% with both POCIS and grab sampling, and that of diuron and atrazine reached 100%. Spatial differences in contamination were evidenced with higher contamination in urban than peri-urban rivers. In particular, diuron was identified as an urban contaminant of concern because its concentrations frequently exceeded the European water quality guideline of 0.200 μg/L in freshwater and may thus represent an ecological risk due to a risk quotient > 1 for algae observed in 94% of grab samples. This study raises concerns about the impacts of urban agriculture on the quality of water resources and to a larger extent on the health of the inhabitants of cities in developing countries.

Graphical abstract

Keywords

Pesticide monitoring Surface waters Urban agriculture Sub-Saharan Africa Passive sampling 

Notes

Acknowledgements

The authors thank Moïse NOLA (University of Yaoundé I) for his advice and support, Jean-Claude NTONGA, and Henriette ATEBA MASSUSSI (Cameroonian Institute of Geological and Mineral Researches) for their welcome and support and Alain FEZEU and Sylvie SPINELLI for their technical and field assistance.

Funding information

This study was financed by LMI PICASS’EAU, HydroSciences Montpellier Lab., Montpellier Institute of Water and Environment and Institut Mines Télécom Mines Alès.

Supplementary material

11356_2018_1798_MOESM1_ESM.xlsx (14 kb)
ESM 1 (XLSX 14 kb).

References

  1. Abass K, Ganle JK, Adaborna E (2016) Coliform contamination of peri-urban grown vegetables and potential public health risks: evidence from Kumasi, Ghana. J Community Health 41:392–397.  https://doi.org/10.1007/s10900-015-0109-y CrossRefGoogle Scholar
  2. Adeyemi D, Anyakora C, Ukpo G, Adedayo A, Darko G (2011) Evaluation of the levels of organochlorine pesticide residues in water samples of Lagos Lagoon using solid phase extraction method. J Environ Chem Ecotoxicol 3:160–166Google Scholar
  3. AFD (2014) Afrique subsaharienne (Cadre d’Intervention Régional 2014–2016)Google Scholar
  4. Ahrens L, Daneshvar A, Lau AE, Kreuger J (2015) Characterization of five passive sampling devices for monitoring of pesticides in water. J Chromatogr A 1405:1–11.  https://doi.org/10.1016/j.chroma.2015.05.044 CrossRefGoogle Scholar
  5. Alavanja MCR, Bonner MR (2012) Occupational pesticide exposures and cancer risk: a review. J Toxicol Environ Health B Crit Rev 15:238–263.  https://doi.org/10.1080/10937404.2012.632358 CrossRefGoogle Scholar
  6. Alvarez DA, Cranor WL, Perkins SD, Clark RC, Smith SB (2008) Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers. J Environ Qual 37:1024–1033.  https://doi.org/10.2134/jeq2006.0463 CrossRefGoogle Scholar
  7. Anderson KA, Seck D, Hobbie KA, Traore AN, McCartney MA, Ndaye A, Forsberg ND, Haigh TA, Sower GJ (2014) Passive sampling devices enable capacity building and characterization of bioavailable pesticide along the Niger, Senegal and Bani Rivers of Africa. Philos Trans R Soc B Biol Sci 369:20130110.  https://doi.org/10.1098/rstb.2013.0110 CrossRefGoogle Scholar
  8. Araújo CVM, Silva DCVR, Gomes LET, Acayaba RD, Montagner CC, Moreira-Santos M, Ribeiro R, Pompêo MLM (2018) Habitat fragmentation caused by contaminants: atrazine as a chemical barrier isolating fish populations. Chemosphere 193:24–31.  https://doi.org/10.1016/j.chemosphere.2017.11.014 CrossRefGoogle Scholar
  9. Aubry C, Pourias J (2013) L’agriculture urbaine fait déjà partie du “métabolisme urbain.” Déméter 2013 21Google Scholar
  10. Aubry C, Ramamonjisoa J, Dabat M-H, Rakotoarisoa J, Rakotondraibe J, Rabeharisoa L (2012) Urban agriculture and land use in cities: an approach with the multi-functionality and sustainability concepts in the case of Antananarivo (Madagascar). Land Use Policy 29:429–439.  https://doi.org/10.1016/j.landusepol.2011.08.009 CrossRefGoogle Scholar
  11. Bachelier G 1959 Etude pédologique des sols de Yaoundé: contribution à l’étude de la pédologie des sols ferralitiques. Agron Trop 14:279–305Google Scholar
  12. Bakker, N., Dubbeling, M., Guendel, S., Sabel-Koschella, U., de Zeeuw, H. (Eds.), 2000. Growing cities, growing food: urban agriculture on the policy agenda; a reader on urban agriculture. ZEL, FeldafingGoogle Scholar
  13. Bellwood-Howard I, Shakya M, Korbeogo G, Schlesinger J (2018) The role of backyard farms in two West African urban landscapes. Landsc Urban Plan 170:34–47.  https://doi.org/10.1016/j.landurbplan.2017.09.026 CrossRefGoogle Scholar
  14. Berthe Dem S, Cobb JM, Mullins DE (2007) Pesticide residues in soil and water from four cotton growing areas of Mali, West Africa. J Agric Food Environ Sci 1:1–12Google Scholar
  15. Binns JA, Maconachie RA, Tanko AI (2003) Water, land and health in urban and peri-urban food production: the case of Kano, Nigeria. Land Degrad Dev 14:431–444.  https://doi.org/10.1002/ldr.571 CrossRefGoogle Scholar
  16. Blanchoud H, Farrugia F, Mouchel JM (2004) Pesticide uses and transfers in urbanised catchments. Chemosphere 55:905–913.  https://doi.org/10.1016/j.chemosphere.2003.11.061 CrossRefGoogle Scholar
  17. Blanchoud H, Moreau-Guigon E, Farrugia F, Chevreuil M, Mouchel JM (2007) Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed. Sci Total Environ 375:168–179.  https://doi.org/10.1016/j.scitotenv.2006.12.009 CrossRefGoogle Scholar
  18. Boscolo Pereira TS, Pereira Boscolo CN, Felício AA, Batlouni SR, Schlenk D, Alves de Almeida E (2016) Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus). Chemosphere 146:497–502.  https://doi.org/10.1016/j.chemosphere.2015.12.073 CrossRefGoogle Scholar
  19. Boscolo CNP, Pereira TSB, Batalhão IG, Dourado PLR, Schlenk D, de Almeida EA (2018) Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus). Chemosphere 191:832–838.  https://doi.org/10.1016/j.chemosphere.2017.10.009 CrossRefGoogle Scholar
  20. Ccanccapa A, Masiá A, Navarro-Ortega A, Picó Y, Barceló D (2016) Pesticides in the Ebro River basin: occurrence and risk assessment. Environ Pollut 211:414–424.  https://doi.org/10.1016/j.envpol.2015.12.059 CrossRefGoogle Scholar
  21. CCME 2014 Canadian environmental quality guidelines [WWW document]. Can. Counc. Minist. Environ. URL http://ceqg-rcqe.ccme.ca/en/index.html (accessed 1.8.18)
  22. Charlestra L, Amirbahman A, Courtemanch DL, Alvarez DA, Patterson H (2012) Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions. Environ Pollut 169:98–104  https://doi.org/10.1016/j.envpol.2012.05.001 CrossRefGoogle Scholar
  23. Chen L, Feng Q, He Q, Huang Y, Zhang Y, Jiang G, Zhao W, Gao B, Lin K, Xu Z (2017) Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau. Sci Total Environ 577:405–412.  https://doi.org/10.1016/j.scitotenv.2016.10.227 CrossRefGoogle Scholar
  24. Cohen B (2006) Urbanization in developing countries: current trends, future projections, and key challenges for sustainability. Technol Soc Sustain Cities 28:63–80.  https://doi.org/10.1016/j.techsoc.2005.10.005 CrossRefGoogle Scholar
  25. Criquet J, Dumoulin D, Howsam M, Mondamert L, Goossens J-F, Prygiel J, Billon G (2017) Comparison of POCIS passive samplers vs. composite water sampling: a case study. Sci Total Environ 609:982–991.  https://doi.org/10.1016/j.scitotenv.2017.07.227 CrossRefGoogle Scholar
  26. CSP INSAH 2015 Liste globale des pesticides autorisés par le CSP. Version de MaiGoogle Scholar
  27. Dalvie MA, Cairncross E, Solomon A, London L (2003) Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa. Environ Health 2:1.  https://doi.org/10.1186/1476-069X-2-1 CrossRefGoogle Scholar
  28. Desgranges N (2015) Développement d’échantillonneurs passifs de type POCIS pour l’évaluation de la contamination en pesticides des eaux de bassins versants languedociens. Université de Bordeaux, BordeauxGoogle Scholar
  29. Donald CE, Scott RP, Blaustein KL, Halbleib ML, Sarr M, Jepson PC, Anderson KA (2016) Silicone wristbands detect individuals’ pesticide exposures in West Africa. R Soc Open Sci 3:160433.  https://doi.org/10.1098/rsos.160433 CrossRefGoogle Scholar
  30. Dumas E, Giraudo M, Goujon E, Halma M, Knhili E, Stauffert M, Batisson I, Besse-Hoggan P, Bohatier J, Bouchard P, Celle-Jeanton H, Costa Gomes M, Delbac F, Forano C, Goupil P, Guix N, Husson P, Ledoigt G, Mallet C, Mousty C, Prévot V, Richard C, Sarraute S (2017) Fate and ecotoxicological impact of new generation herbicides from the triketone family: an overview to assess the environmental risks. J Hazard Mater 325:136–156.  https://doi.org/10.1016/j.jhazmat.2016.11.059 CrossRefGoogle Scholar
  31. Dworak T, Gonzalez C, Laaser C, Interwies E (2005) The need for new monitoring tools to implement the WFD. Environ Sci Policy 8:301–306.  https://doi.org/10.1016/j.envsci.2005.03.007 CrossRefGoogle Scholar
  32. Elfman L, Tooke NE, Patring JDM (2011) Detection of pesticides used in rice cultivation in streams on the island of Leyte in the Philippines. Agric Water Manag 101:81–87.  https://doi.org/10.1016/j.agwat.2011.09.005 CrossRefGoogle Scholar
  33. Elibariki R, Maguta MM (2017) Status of pesticides pollution in Tanzania—a review. Chemosphere 178:154–164.  https://doi.org/10.1016/j.chemosphere.2017.03.036 CrossRefGoogle Scholar
  34. Endamana D, Kengne IM, Gockowski J, Nya J, Wandji D, Nyemeck J, Soua NN, Bakwowi JN 2003 Wastewater reuse for urban and periurban agriculture in Yaoundé (Cameroon): opportunities and constraints. Presented at the International Symposium on Water, Poverty and Productive uses of Water at the Household Level, MuldersdriftGoogle Scholar
  35. EU (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policyGoogle Scholar
  36. Fairbairn DJ, Karpuzcu ME, Arnold WA, Barber BL, Kaufenberg EF, Koskinen WC, Novak PJ, Rice PJ, Swackhamer DL (2016) Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed. Sci Total Environ 551–552:605–613.  https://doi.org/10.1016/j.scitotenv.2016.02.056 CrossRefGoogle Scholar
  37. Galt RE (2008) Beyond the circle of poison: significant shifts in the global pesticide complex, 1976–2008. Glob Environ Chang 18:786–799.  https://doi.org/10.1016/j.gloenvcha.2008.07.003 CrossRefGoogle Scholar
  38. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032.  https://doi.org/10.1016/j.chemosphere.2004.04.061 CrossRefGoogle Scholar
  39. Gockowski J, Ndoumbé M 1999 An analysis of horticultural production and marketing systems in the forest margins ecoregional benchmark of southern Cameroon: RCMP Research monograph, No. 27, RCMP Research monograph, No. 27. International Institute of Tropical Agriculture (IITA), Ibadan, NigeriaGoogle Scholar
  40. Gockowski J, Mbazo’o J, Mbah G, Fouda Moulende T (2003) African traditional leafy vegetables and the urban and peri-urban poor. Food Policy 28:221–235.  https://doi.org/10.1016/S0306-9192(03)00029-0 CrossRefGoogle Scholar
  41. Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495.  https://doi.org/10.1016/S0160-4120(01)00031-9 CrossRefGoogle Scholar
  42. Greenwood R, Mills G, Vrana B (2007) Passive sampling techniques in environmental monitoring. Elsevier, AmsterdamGoogle Scholar
  43. Gwenzi W, Chaukura N (2018) Organic contaminants in African aquatic systems: current knowledge, health risks, and future research directions. Sci Total Environ 619–620:1493–1514.  https://doi.org/10.1016/j.scitotenv.2017.11.121 CrossRefGoogle Scholar
  44. Hamilton AJ, Burry K, Mok H-F, Barker SF, Grove JR, Williamson VG (2014) Give peas a chance? Urban agriculture in developing countries. A review. Agron Sustain Dev 34:45–73.  https://doi.org/10.1007/s13593-013-0155-8 CrossRefGoogle Scholar
  45. Hasenbein S, Peralta J, Lawler SP, Connon RE (2017) Environmentally relevant concentrations of herbicides impact non-target species at multiple sublethal endpoints. Sci Total Environ 607–608:733–743.  https://doi.org/10.1016/j.scitotenv.2017.06.270 CrossRefGoogle Scholar
  46. Hayzoun H, Garnier C, Durrieu G, Lenoble V, Le Poupon C, Angeletti B, Ouammou A, Mounier S (2015) Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco). Sci Total Environ 502:296–308.  https://doi.org/10.1016/j.scitotenv.2014.09.014 CrossRefGoogle Scholar
  47. He H, Yu J, Chen G, Li W, He J, Li H (2012) Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata. Ecotoxicol Environ Saf 80:91–96.  https://doi.org/10.1016/j.ecoenv.2012.02.009 CrossRefGoogle Scholar
  48. Hellar-Kihampa H (2011) Pesticide residues in four rivers running through an intensive agricultural area, Kilimanjaro, Tanzania. J Appl Sci Environ Manag 15:307–316Google Scholar
  49. Herrero-Hernández E, Rodríguez-Cruz MS, Pose-Juan E, Sánchez-González S, Andrades MS, Sánchez-Martín MJ (2017) Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Sci Total Environ 609:161–171.  https://doi.org/10.1016/j.scitotenv.2017.07.113 CrossRefGoogle Scholar
  50. Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J (2016) Microbial catabolism of chemical herbicides: microbial resources, metabolic pathways and catabolic genes. Pestic Biochem Physiol 143:272–297.  https://doi.org/10.1016/j.pestbp.2016.11.010 CrossRefGoogle Scholar
  51. Huang Y, Chen Q, Deng M, Japenga J, Li T, Yang X, He Z (2018) Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. J Environ Manag 207:159–168.  https://doi.org/10.1016/j.jenvman.2017.10.072 CrossRefGoogle Scholar
  52. Ibrahim I, Togola A, Gonzalez C (2012) Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration. Environ Sci Pollut Res 20:3679–3687.  https://doi.org/10.1007/s11356-012-1284-3 CrossRefGoogle Scholar
  53. Ibrahim I, Togola A, Gonzalez C (2013) In-situ calibration of POCIS for the sampling of polar pesticides and metabolites in surface water. Talanta 116:495–500.  https://doi.org/10.1016/j.talanta.2013.07.028 CrossRefGoogle Scholar
  54. Isogai N, Hogarh JN, Seike N, Kobara Y, Oyediran F, Wirmvem MJ, Ayonghe SN, Fobil J, Masunaga S (2016) Atmospheric monitoring of organochlorine pesticides across some West African countries. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-016-7284-y
  55. IUPC (2003) Regulatory limits for pesticide residues in water. Pure Appl Chem 75:1123–1155CrossRefGoogle Scholar
  56. Jansen HC, Harmsen J (2011) Pesticide monitoring in the Central Rift Valley 2009–2010: ecosystems for water in Ethiopa (no. 2083). Wageningen Environmental Research (Alterra), WageningueGoogle Scholar
  57. Jepson PC, Guzy M, Blaustein K, Sow M, Sarr M, Mineau P, Kegley S (2014) Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification. Philos Trans R Soc B 369:20130491.  https://doi.org/10.1098/rstb.2013.0491 CrossRefGoogle Scholar
  58. Jorgenson B, Fleishman E, Macneale KH, Schlenk D, Scholz NL, Spromberg JA, Werner I, Weston DP, Xiao Q, Young TM, Zhang M (2013) Predicted transport of pyrethroid insecticides from an urban landscape to surface water. Environ Toxicol Chem 32:2469–2477.  https://doi.org/10.1002/etc.2352 CrossRefGoogle Scholar
  59. Kaonga CC, Takeda K, Sakugawa H (2015) Diuron, irgarol 1051 and fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan. Sci Total Environ 518–519:450–458.  https://doi.org/10.1016/j.scitotenv.2015.03.022 CrossRefGoogle Scholar
  60. Lee-Smith D (2010) Cities feeding people: an update on urban agriculture in equatorial Africa. Environ Urban 22:483–499.  https://doi.org/10.1177/0956247810377383 CrossRefGoogle Scholar
  61. Lehmann E, Fargues M, Nfon Dibié J-J, Konaté Y, de Alencastro LF (2017) Assessment of water resource contamination by pesticides in vegetable-producing areas in Burkina Faso. Environ Sci Pollut Res Int 25:3681–3694.  https://doi.org/10.1007/s11356-017-0665-z CrossRefGoogle Scholar
  62. Lieunang Letche AR, Fonteh MF, Ndam Ngoupayou JR 2009 La Gestion Intégrée des Ressources en Eau (GIRE) au Cameroun: Préoccupations environnementales affectant la gestion des ressources en eau dans le bassin versant de la Méfou. Editions Universitaires EuropéennesGoogle Scholar
  63. Mac Loughlin TM, Peluso L, Marino DJG (2017) Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina. Sci Total Environ 598:572–580.  https://doi.org/10.1016/j.scitotenv.2017.04.116 CrossRefGoogle Scholar
  64. Mackay H (2018) Mapping and characterising the urban agricultural landscape of two intermediate-sized Ghanaian cities. Land Use Policy 70:182–197.  https://doi.org/10.1016/j.landusepol.2017.10.031 CrossRefGoogle Scholar
  65. Mansour SA (2004) Pesticide exposure—Egyptian scene. Toxicology 198:91–115.  https://doi.org/10.1016/j.tox.2004.01.036 CrossRefGoogle Scholar
  66. Masiá A, Campo J, Vázquez-Roig P, Blasco C, Picó Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J Hazard Mater 263(Part 1):95–104  https://doi.org/10.1016/j.jhazmat.2013.09.035 CrossRefGoogle Scholar
  67. Mast MA, Foreman WT, Skaates SV (2007) Current-use pesticides and organochlorine compounds in precipitation and lake sediment from two high-elevation national parks in the Western United States. Arch Environ Contam Toxicol 52:294–305.  https://doi.org/10.1007/s00244-006-0096-1 CrossRefGoogle Scholar
  68. Mattah MM, Mattah PAD, Futagbi G (2015) Pesticide application among farmers in the catchment of Ashaiman irrigation scheme of Ghana: health implications. J Environ Public Health 2015:1–7.  https://doi.org/10.1155/2015/547272 CrossRefGoogle Scholar
  69. McCutcheon SC, Schnoor JL 2004 Phytoremediation: transformation and control of contaminants. WileyGoogle Scholar
  70. Mengistie BT, Mol APJ, Oosterveer P (2015) Pesticide use practices among smallholder vegetable farmers in Ethiopian Central Rift Valley. Environ Dev Sustain 19:1–24.  https://doi.org/10.1007/s10668-015-9728-9 CrossRefGoogle Scholar
  71. Miège C, Mazzella N, Allan I, Dulio V, Smedes F, Tixier C, Vermeirssen E, Brant J, O’Toole S, Budzinski H, Ghestem J-P, Staub P-F, Lardy-Fontan S, Gonzalez J-L, Coquery M, Vrana B (2015) Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment—achievements to date and perspectives. Trends Environ Anal Chem 8:20–26.  https://doi.org/10.1016/j.teac.2015.07.001 CrossRefGoogle Scholar
  72. Ministère de l’agriculture et du développement rural (Cameroun) (2013) Liste des pesticides homologués au Cameroun au 31 juillet 2013Google Scholar
  73. Mmualefe LC, Torto N, Huntsman-Mapila P, Mbongwe B (2009) Headspace solid phase microextraction in the determination of pesticides in water samples from the Okavango Delta with gas chromatography-electron capture detection and time-of-flight mass spectrometry. Microchem J 91:239–244.  https://doi.org/10.1016/j.microc.2008.12.005 CrossRefGoogle Scholar
  74. Mougeot 2000 Urban agriculture: definition, presence, potentials and risks, and policy challenges (no. 31), Cities feeding people series. International Development Research Centre (IDRC)Google Scholar
  75. Negatu B, Kromhout H, Mekonnen Y, Vermeulen R (2017) Occupational pesticide exposure and respiratory health: a large-scale cross-sectional study in three commercial farming systems in Ethiopia. Thorax 72:498–499.  https://doi.org/10.1136/thoraxjnl-2016-208924 CrossRefGoogle Scholar
  76. Nougang ME, Nola M, Ateba Bessa H, Tamatcho Kweyang BP, Noah Ewoti OV, Moungang LM (2011) Prevalence of pathogenic strains of Escherichia coli in urban streams in the equatorial region of Cameroon (Central Africa). J Appl Biosci 48:3293–3305Google Scholar
  77. Ntow WJ, Gijzen HJ, Kelderman P, Drechsel P (2006) Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci 62:356–365.  https://doi.org/10.1002/ps.1178 CrossRefGoogle Scholar
  78. Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31.  https://doi.org/10.1017/S0021859605005708 CrossRefGoogle Scholar
  79. Okoya AA, Ogunfowokan AO, Asubiojo OI, Torto N (2013) Organochlorine pesticide residues in sediments and waters from cocoa producing areas of Ondo State, Southwestern Nigeria. Int Sch Res Not 2013:e131647.  https://doi.org/10.1155/2013/131647 CrossRefGoogle Scholar
  80. Olivry J-C (1986) Fleuves et rivières du Cameroun, Monographies hydrologiques. MESRES-ORSTOM, BondyGoogle Scholar
  81. Organization W.H., Safety I.P. on C (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification 2009. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to ClassificationGoogle Scholar
  82. Padgham J, Jabbour J, Dietrich K (2015) Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Clim 12:183–204.  https://doi.org/10.1016/j.uclim.2015.04.003 CrossRefGoogle Scholar
  83. Palma G, Sánchez A, Olave Y, Encina F, Palma R, Barra R (2004) Pesticide levels in surface waters in an agricultural–forestry basin in Southern Chile. Chemosphere 57:763–770.  https://doi.org/10.1016/j.chemosphere.2004.08.047 CrossRefGoogle Scholar
  84. Pereira TSB, Boscolo CNP, da Silva DGH, Batlouni SR, Schlenk D, de Almeida EA (2015) Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquat Toxicol Amst Neth 164:10–15.  https://doi.org/10.1016/j.aquatox.2015.04.013 CrossRefGoogle Scholar
  85. Perrin JL, Raïs N, Chahinian N, Moulin P, Ijjaali M (2014) Water quality assessment of highly polluted rivers in a semi-arid Mediterranean zone Oued Fez and Sebou River (Morocco). J Hydrol 510:26–34.  https://doi.org/10.1016/j.jhydrol.2013.12.002 CrossRefGoogle Scholar
  86. Poulier G, Lissalde S, Charriau A, Buzier R, Cleries K, Delmas F, Mazzella N, Guibaud G (2014) Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy. Environ Sci Pollut Res 22:8044–8057.  https://doi.org/10.1007/s11356-014-2814-y CrossRefGoogle Scholar
  87. PPDB (2011) Pesticides Properties DataBase [WWW Document]. URL http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm (accessed 5.5.15)
  88. Prain G, Lee-Smith D, Karanja N (eds) (2010) African urban harvest. Springer New York, New York, NY.  https://doi.org/10.1007/978-1-4419-6250-8 CrossRefGoogle Scholar
  89. Ricart M, Barceló D, Geiszinger A, Guasch H, de Alda ML, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401.  https://doi.org/10.1016/j.chemosphere.2009.06.017 CrossRefGoogle Scholar
  90. Rippy MA, Deletic A, Black J, Aryal R, Lampard J-L, Tang JY-M, McCarthy D, Kolotelo P, Sidhu J, Gernjak W (2017) Pesticide occurrence and spatio-temporal variability in urban run-off across Australia. Water Res 115:245–255.  https://doi.org/10.1016/j.watres.2017.03.010 CrossRefGoogle Scholar
  91. Robineau O, Dugué P (2018) A socio-geographical approach to the diversity of urban agriculture in a West African city. Landsc Urban Plan 170:48–58.  https://doi.org/10.1016/j.landurbplan.2017.09.010 CrossRefGoogle Scholar
  92. Ryberg KR, Gilliom RJ (2015) Trends in pesticide concentrations and use for major rivers of the United States. Sci Total Environ 538:431–444  https://doi.org/10.1016/j.scitotenv.2015.06.095 CrossRefGoogle Scholar
  93. Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689.  https://doi.org/10.1016/j.scitotenv.2016.08.163 CrossRefGoogle Scholar
  94. Shirangi A, Nieuwenhuijsen M, Vienneau D, Holman CDJ (2011) Living near agricultural pesticide applications and the risk of adverse reproductive outcomes: a review of the literature. Paediatr Perinat Epidemiol 25:172–191.  https://doi.org/10.1111/j.1365-3016.2010.01165.x CrossRefGoogle Scholar
  95. Smart J, Nel E, Binns T (2015) Economic crisis and food security in Africa: exploring the significance of urban agriculture in Zambia’s Copperbelt province. Geoforum 65:37–45.  https://doi.org/10.1016/j.geoforum.2015.07.009 CrossRefGoogle Scholar
  96. Smernik RJ, Kookana RS (2015) The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils. Chemosphere 119:99–104.  https://doi.org/10.1016/j.chemosphere.2014.05.066 CrossRefGoogle Scholar
  97. Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162.  https://doi.org/10.1016/j.jhazmat.2017.09.058 CrossRefGoogle Scholar
  98. Stehle S, Dabrowski JM, Bangert U, Schulz R (2016) Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Sci Total Environ 545–546:171–183.  https://doi.org/10.1016/j.scitotenv.2015.12.077 CrossRefGoogle Scholar
  99. Teklu BM, Adriaanse PI, Van den Brink PJ (2016) Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia. Chemosphere 161:280–291.  https://doi.org/10.1016/j.chemosphere.2016.07.031 CrossRefGoogle Scholar
  100. Temple L, Marquis S, David O, Simon S (2009) Le maraîchage périurbain à Yaoundé est-il un système de production localisé innovant?. Econ For Soc 2309–2328. https://www.hal.archives-ouvertes.fr/hal-00384377
  101. Tien C-J, Lin M-C, Chiu W-H, Chen CS (2013) Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. Environ Pollut 179:95–104.  https://doi.org/10.1016/j.envpol.2013.04.009 CrossRefGoogle Scholar
  102. White JT, Bunn C (2017) Growing in Glasgow: innovative practices and emerging policy pathways for urban agriculture. Land Use Policy 68:334–344.  https://doi.org/10.1016/j.landusepol.2017.07.056 CrossRefGoogle Scholar
  103. Williamson S, Ball A, Pretty J (2008) Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot 27:1327–1334.  https://doi.org/10.1016/j.cropro.2008.04.006 CrossRefGoogle Scholar
  104. Wodageneh A 1997 Obsolete and unwanted pesticide stocks, in: Prevention and disposal of obsolete and unwanted pesticide stocks in Africa and the Near East. Presented at the Inter-Organization Programme for the Sound Management of Chemicals (IOMC), Bamako (Mali)Google Scholar
  105. Wood RJ, Mitrovic SM, Lim RP, Kefford BJ (2017) Chronic effects of atrazine exposure and recovery in freshwater benthic diatoms from two communities with different pollution histories. Aquat Toxicol 189:200–208.  https://doi.org/10.1016/j.aquatox.2017.06.013 CrossRefGoogle Scholar
  106. Yabuki Y, Nagai T, Inao K, Ono J, Aiko N, Ohtsuka N, Tanaka H, Tanimori S (2016) Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS). Biosci Biotechnol Biochem 80:2069–2075.  https://doi.org/10.1080/09168451.2016.1191329 CrossRefGoogle Scholar
  107. Zeeuw HD, Veenhuizen RV, Dubbeling M (2011) The role of urban agriculture in building resilient cities in developing countries. J Agric Sci 149:153–163.  https://doi.org/10.1017/S0021859610001279 CrossRefGoogle Scholar
  108. Zogning Moffo MO, Tsalefac M, Ursu A, Iatu C (2016) Contribution of geographic information systems for the mapping of flooding factors in Yaoundé: the case study of Mfoundi upstream watershed. Present Environ Sustain Dev 10:217–234.  https://doi.org/10.1515/pesd-2016-0019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Perrine Branchet
    • 1
    Email author
  • Emmanuelle Cadot
    • 2
  • Hélène Fenet
    • 2
  • David Sebag
    • 2
    • 3
  • Benjamin Ngounou Ngatcha
    • 4
  • Valérie Borrell-Estupina
    • 2
  • Jules Remy Ndam Ngoupayou
    • 5
  • Ives Kengne
    • 6
  • Jean-Jacques Braun
    • 7
  • Catherine Gonzalez
    • 1
  1. 1.Laboratoire de Génie de l’Environnement Industriel (LGEI), IMT Mines AlèsUniversity of MontpellierAlesFrance
  2. 2.HydroSciences Montpellier, IRD, CNRSUniversity of MontpellierMontpellierFrance
  3. 3.Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2CRouenFrance
  4. 4.Department of Earth Sciences, Faculty of SciencesUniversity of NgaoundéréNgaoundereCameroon
  5. 5.Department of Earth Sciences, Faculty of SciencesUniversity of Yaoundé IYaoundeCameroon
  6. 6.Wastewater Research Unit, Faculty of SciencesUniversity of Yaoundé IYaoundeCameroon
  7. 7.Géosciences Environnement Toulouse, CNRS, IRD, CNAP, CNESUniversity of Toulouse IIIToulouseFrance

Personalised recommendations