Environmental Science and Pollution Research

, Volume 25, Issue 15, pp 14868–14881 | Cite as

Observation of optical properties and sources of aerosols at Buddha’s birthplace, Lumbini, Nepal: environmental implications

  • Dipesh RupakhetiEmail author
  • Shichang KangEmail author
  • Maheswar Rupakheti
  • Zhiyuan Cong
  • Lekhendra Tripathee
  • Arnico K. Panday
  • Brent N. Holben
Research Article


For the first time, aerosol optical properties are measured over Lumbini, Nepal, with CIMEL sunphotometer of the Aerosol Robotic Network (AERONET) program. Lumbini is a sacred place as the birthplace of Lord Buddha, and thus a UNESCO world heritage site, located near the northern edge of the central Indo-Gangetic Plains (IGP) and before the Himalayan foothills (and Himalayas) to its north. Average aerosol optical depth (AOD) is found to be 0.64 ± 0.38 (0.06–3.28) over the sampling period (January 2013–December 2014), with the highest seasonal AOD during the post-monsoon season (0.72 ± 0.44). More than 80% of the daily averaged AOD values, during the monitoring period, are above 0.3, indicating polluted conditions in the region. The levels of aerosol load observed over Lumbini are comparable to those observed at several heavily polluted sites in the IGP. Based on the relationship between AOD and Ångstrom exponent (α), anthropogenic, biomass burning, and mixed aerosols are found to be the most prevalent aerosol types. The aerosol volume-size distribution is bi-modal during all four seasons with modes centered at 0.1–0.3 and 3–4 μm. For both fine and coarse modes, the highest volumetric concentration of ~ 0.08 μm−3 μm−2 is observed during the post-monsoon and pre-monsoon seasons. As revealed by the single-scattering albedo (SSA), asymmetry parameter (AP), and refractive index (RI) analyses, aerosol loading over Lumbini is dominated by absorbing, urban-industrial, and biomass burning aerosols.


Aerosol optical depth Ångstrom exponent Indo-Gangetic Plain Lumbini Himalayas Nepal 



Maheswar Rupakheti acknowledges the support provided by the Institute for Advanced Sustainability Studies (IASS) which is funded by the German Federal Ministry for Education and Research (BMBF) and the Brandenburg Ministry for Science, Research and Culture (MWFK). The authors acknowledge Christoph Cüppers and Michael Pahlke of the Lumbini International Research Institute (LIRI) for providing the space and power to run the instruments at the LIRI premises and Bhogendra Kathayat and Bhoj Raj Bhatta for their support in the operation of the site.

Funding information

This study is supported by National Natural Science Foundation of China (41630754 and 41721091), Chinese Academy of Sciences (QYZDJ-SSW-DQC039) and the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2017). Dipesh Rupakheti is supported by CAS-TWAS President’s Fellowship for International PhD Students.


  1. Adesina AJ, Kumar KR, Sivakumar V, Griffith D (2014) Direct radiative forcing of urban aerosols over Pretoria (25.75° S, 28.28° E) using AERONET sunphotometer data: first scientific results and environmental impact. J Environ Sci 26:2459–2474CrossRefGoogle Scholar
  2. Adhikary B, Carmichael GR, Tang Y, Leung LR, Qian Y, Schauer JJ, Stone EA, Ramanathan V, Ramana MV (2007) Characterization of the seasonal cycle of south Asian aerosols: a regional-scale modeling analysis. J Geophys Res 112(D22S22):1–22Google Scholar
  3. Alam K, Qureshi S, Blaschke T (2011a) Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ 45:4641–4651CrossRefGoogle Scholar
  4. Alam K, Trautmann T, Blaschke T (2011b) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res 101:773–782CrossRefGoogle Scholar
  5. Alam K, Trautmann T, Blaschke T, Majid H (2012) Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmos Environ 50:234–245CrossRefGoogle Scholar
  6. Alam K, Khan R, Ali S, Ajmal M, Khan G, Muhammad W, Ali MA (2014) Variability of aerosol optical depth over Swat in Northern Pakistan based on satellite data. Arab J Geosci 8:547–555CrossRefGoogle Scholar
  7. Andrews E, Sheridan P, Fiebig M, McComiskey A, Ogren J, Arnott P, Covert D, Elleman R, Gasparini R, Collins D (2006) Comparison of methods for deriving aerosol asymmetry parameter. J Geophys Res 111:1–16CrossRefGoogle Scholar
  8. Arola A, Schuster G, Myhre G, Kazadzis S, Dey S, Tripathi SN (2011) Inferring absorbing organic carbon content from AERONET data. Atmos Chem Phys 11:215–225CrossRefGoogle Scholar
  9. Bergstrom RW, Pilewskie P, Russell P, Redemann J, Bond T, Quinn P, Sierau B (2007) Spectral absorption properties of atmospheric aerosols. Atmos Chem Phys 7:5937–5943CrossRefGoogle Scholar
  10. Bi J, Huang J, Fu Q, Wang X, Shi J, Zhang W, Huang Z, Zhang B (2011) Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. J Quant Spectrosc Radiat Transf 112:346–360CrossRefGoogle Scholar
  11. Bibi H, Alam K, Chishtie F, Bibi S, Shahid I, Blaschke T (2015) Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos Environ 111:113–126CrossRefGoogle Scholar
  12. Bibi H, Alam K, Blaschke T, Bibi S, Iqbal MJ (2016) Long-term (2007–2013) analysis of aerosol optical properties over four locations in the Indo-Gangetic plains. Appl Opt 55:6199–6211CrossRefGoogle Scholar
  13. Che H, Wang Y, Sun J, Zhang X, Zhang X, Guo J (2013) Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual Res 13:777–785CrossRefGoogle Scholar
  14. Chew BN, Campbell JR, Hyer EJ, Salinas SV, Reid JS, Welton EJ, Holben BN, Liew SC (2016) Relationship between aerosol optical depth and particulate matter over Singapore: effects of aerosol vertical distributions. Aerosol Air Qual Res 16:2818–2830CrossRefGoogle Scholar
  15. Choudhry P, Misra A, Tripathi S (2012) Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital, Annales Geophysicae. Copernicus GmbH, pp. 1479–1493Google Scholar
  16. Cong Z, Kang S, Smirnov A, Holben B (2009) Aerosol optical properties at Nam Co, a remote site in central Tibetan Plateau. Atmos Res 92:42–48CrossRefGoogle Scholar
  17. Cong Z, Kang S, Kawamura K, Liu B, Wan X, Wang Z, Gao S, Fu P (2015) Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmos Chem Phys 15:1573–1584CrossRefGoogle Scholar
  18. Dey S, Tripathi SN, Singh RP, Holben BN (2005) Seasonal variability of the aerosol parameters over Kanpur, an urban site in Indo-Gangetic basin. Adv Space Res 36:778–782CrossRefGoogle Scholar
  19. Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  20. Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:1–15Google Scholar
  21. Gautam R, Hsu NC, Lau KM, Tsay SC, Kafatos M (2009) Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys Res Lett 36:1–5Google Scholar
  22. Gautam R, Hsu NC, Tsay SC, Lau KM, Holben B, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S, Aryal D, Kayastha R, Kim KM (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863CrossRefGoogle Scholar
  23. Gobbi GP, Angelini F, Bonasoni P, Verza GP, Marinoni A, Barnaba F (2010) Sunphotometry of the 2006–2007 aerosol optical/radiative properties at the Himalayan Nepal climate observatory-pyramid (5079 m a.s.l.) Atmos Chem Phys 10:11209–11221CrossRefGoogle Scholar
  24. Habib G, Venkataraman C, Chiapello I, Ramachandran S, Boucher O, Shekar Reddy M (2006) Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions. Atmos Environ 40:1909–1921CrossRefGoogle Scholar
  25. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  26. Hoppel WA, Fitzgerald JW, Larson RE (1985) Aerosol size distributions in air masses advecting off the east coast of the United States. J Geophys Res 90:2365–2379CrossRefGoogle Scholar
  27. Kang S, Chen P, Li C, Liu B, Cong Z (2016) Atmospheric aerosol elements over the inland Tibetan Plateau: concentration, seasonality, and transport. Aerosol Air Qual Res 16:789–800CrossRefGoogle Scholar
  28. Kaskaoutis D, Kambezidis H, Adamopoulos A, Kassomenos P (2006) On the characterization of aerosols using the Ångström exponent in the Athens area. J Atmos Sol Terr Phys 68:2147–2163CrossRefGoogle Scholar
  29. Kaskaoutis D, Kambezidis H, Hatzianastassiou N, Kosmopoulos P, Badarinath K (2007) Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos Chem Phys Discuss 7:6357–6411CrossRefGoogle Scholar
  30. Kaskaoutis DG, Nastos PT, Kosmopoulos PG, Kambezidis HD (2010) The combined use of satellite data, air-mass trajectories and model applications for monitoring dust transport over Athens, Greece. Int J Remote Sens 31:5089–5109CrossRefGoogle Scholar
  31. Kaskaoutis D, Kosmopoulos P, Nastos P, Kambezidis H, Sharma M, Mehdi W (2012) Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomat Nat Haz Risk 3:35–54CrossRefGoogle Scholar
  32. Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223CrossRefGoogle Scholar
  33. Kedia S, Ramachandran S, Holben BN, Tripathi SN (2014) Quantification of aerosol type, and sources of aerosols over the Indo-Gangetic Plain. Atmos Environ 98:607–619CrossRefGoogle Scholar
  34. Kim M, Kim J, Jeong U, Kim W, Hong H, Holben B, Eck TF, Lim JH, Song CK, Lee S, Chung CY (2016) Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from meteorological imager (MI) on-board the communication, ocean, and meteorological satellite (COMS). Atmos Chem Phys 16:1789–1808CrossRefGoogle Scholar
  35. Kumar M, Tiwari S, Murari V, Singh AK, Banerjee T (2015) Wintertime characteristics of aerosols at middle Indo-Gangetic Plain: impacts of regional meteorology and long range transport. Atmos Environ 104:162–175CrossRefGoogle Scholar
  36. Kumar V, Sarkar C, Sinha V (2016) Influence of post-harvest crop residue fires on surface ozone mixing ratios in the NW IGP analyzed using 2 years of continuous in situ trace gas measurements. J Geophys Res 121:3619–3633Google Scholar
  37. Lee J, Kim J, Song CH, Kim SB, Chun Y, Sohn BJ, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:3110–3117CrossRefGoogle Scholar
  38. Li C, Bosch C, Kang S, Andersson A, Chen P, Zhang Q, Cong Z, Chen B, Qin D, Gustafsson Ö (2016) Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat Commun 7:12574CrossRefGoogle Scholar
  39. Lüthi ZL, Škerlak B, Kim SW, Lauer A, Mues A, Rupakheti M, Kang S (2015) Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas. Atmos Chem Phys 15:6007–6021CrossRefGoogle Scholar
  40. Mallet M, Dubovik O, Nabat P, Dulac F, Kahn R, Sciare J, Paronis D, Léon JF (2013) Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations. Atmos Chem Phys 13:9195–9210CrossRefGoogle Scholar
  41. Marcq S, Laj P, Roger J, Villani P, Sellegri K, Bonasoni P, Marinoni A, Cristofanelli P, Verza G, Bergin M (2010) Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory-Pyramid site (5079 m asl). Atmos Chem Phys 10:5859–5872CrossRefGoogle Scholar
  42. Mehta M (2015) A study of aerosol optical depth variations over the Indian region using thirteen years (2001–2013) of MODIS and MISR level 3 data. Atmos Environ 109:161–170CrossRefGoogle Scholar
  43. Praveen PS, Ahmed T, Kar A, Rehman IH, Ramanathan V (2012) Link between local scale BC emissions in the Indo-Gangetic Plains and large scale atmospheric solar absorption. Atmos Chem Phys 12:1173–1187CrossRefGoogle Scholar
  44. Ram K, Sarin MM (2011) Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmos Environ 45:460–468CrossRefGoogle Scholar
  45. Ram K, Sarin MM (2015) Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and central Himalaya: impact of anthropogenic sources. J Environ Manag 148:153–163CrossRefGoogle Scholar
  46. Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res 113:1–16Google Scholar
  47. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  48. Ramanathan V, Crutzen PJ (2003) New directions: atmospheric Brown “clouds”. Atmos Environ 37:4033–4035CrossRefGoogle Scholar
  49. Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl Geophys 162:1609–1626CrossRefGoogle Scholar
  50. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  51. Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796CrossRefGoogle Scholar
  52. Rupakheti D, Adhikary B, Praveen PS, Rupakheti M, Kang S, Mahata KS, Naja M, Zhang Q, Panday AK, Lawrence MG (2017) Pre-monsoon air quality over Lumbini, a world heritage site along the Himalayan foothills. Atmos Chem Phys 17:11041–11063CrossRefGoogle Scholar
  53. Russell P, Bergstrom R, Shinozuka Y, Clarke A, DeCarlo P, Jimenez J, Livingston J, Redemann J, Dubovik O, Strawa A (2010) Absorption Angstrom xponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169CrossRefGoogle Scholar
  54. Sarkar C, Kumar V, Sinha V (2013) Massive emissions of carcinogenic benzenoids from paddy residue burning in north India. Curr Sci India 104:1703–1709Google Scholar
  55. Sharma AR, Kharol SK, Badarinath K, Singh D (2010) Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India. Ann Geophys 28:367–379CrossRefGoogle Scholar
  56. Sharma M, Kaskaoutis DG, Singh RP, Singh S (2014) Seasonal variability of atmospheric aerosol parameters over Greater Noida using ground sunphotometer observations. Aerosol Air Qual Res 14:608–622CrossRefGoogle Scholar
  57. Shrestha P, Barros AP, Khlystov A (2010) Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season. Atmos Chem Phys 10:11605–11621CrossRefGoogle Scholar
  58. Sigdel M, Ma Y (2015) Evaluation of future precipitation scenario using statistical downscaling model over humid, subhumid, and arid region of Nepal—a case study. Theor Appl Climatol 123:1–8Google Scholar
  59. Singh R, Dey S, Tripathi S, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:1–14Google Scholar
  60. Singh A, Rajput P, Sharma D, Sarin MM, Singh D (2014) Black carbon and elemental carbon from postharvest agricultural-waste burning emissions in the indo-Gangetic plain. Adv Meteorol 2014:1–10Google Scholar
  61. Sinha V, Kumar V, Sarkar C (2014) Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning. Atmos Chem Phys 14:5921–5941CrossRefGoogle Scholar
  62. Sinyuk A, Torres O, Dubovik O (2003) Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophys Res Lett 30(2):1–4CrossRefGoogle Scholar
  63. Smirnov A, Holben BN, Dubovik O, O'Neill NT, Eck TF, Westphal DL, Goroch AK, Pietras C, Slutsker I (2002) Atmospheric aerosol optical properties in the Persian Gulf. J Atmos Sci 59:620–634CrossRefGoogle Scholar
  64. Smirnov A, Holben B, Slutsker I, Giles D, McClain CR, Eck T, Sakerin S, Macke A, Croot P, Zibordi G (2009) Maritime aerosol network as a component of aerosol robotic network. J Geophys Res Atmos 114Google Scholar
  65. Srivastava A, Devara P, Rao YJ, Bhavanikumar Y, Rao D (2008) Aerosol optical depth, ozone and water vapor measurements over Gadanki, a tropical station in peninsular India. Aerosol Air Qual Res 8:459–476CrossRefGoogle Scholar
  66. Srivastava AK, Tiwari S, Devara PCS, Bisht DS, Srivastava MK, Tripathi SN, Goloub P, Holben BN (2011) Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann Geophys 29:789–804CrossRefGoogle Scholar
  67. Srivastava AK, Singh S, Tiwari S, Kanawade VP, Bisht DS (2012a) Variation between near-surface and columnar aerosol characteristics during the winter and summer at Delhi in the Indo-Gangetic Basin. J Atmos Sol-Terr Phys 77:57–66CrossRefGoogle Scholar
  68. Srivastava AK, Tripathi SN, Dey S, Kanawade VP, Tiwari S (2012b) Inferring aerosol types over the Indo-Gangetic Basin from ground based sunphotometer measurements. Atmos Res 109-110:64–75CrossRefGoogle Scholar
  69. Srivastava AK, Bisht DS, Ram K, Tiwari S, Srivastava MK (2014a) Characterization of carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources. Environ Sci Pollut Res 21:8610–8619CrossRefGoogle Scholar
  70. Srivastava AK, Yadav V, Pathak V, Singh S, Tiwari S, Bisht DS, Goloub P (2014b) Variability in radiative properties of major aerosol types: a year-long study over Delhi—an urban station in Indo-Gangetic Basin. Sci Total Environ 473-474:659–666CrossRefGoogle Scholar
  71. Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex B, Midgley B (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  72. Tiwari S, Singh A (2013) Variability of aerosol parameters derived from ground and satellite measurements over Varanasi located in the Indo-Gangetic Basin. Aerosol Air Qual Res 13:627–638Google Scholar
  73. Tiwari S, Srivastava AK, Singh AK, Singh S (2015) Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing. Environ Sci Pollut Res 22:12246–12260CrossRefGoogle Scholar
  74. Tiwari S, Tiwari S, Hopke P, Attri S, Soni V, Singh AK (2016) Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city “New Delhi,” India. Environ Sci Pollut Res 23:8781–8793CrossRefGoogle Scholar
  75. Tripathee L, Kang S, Rupakheti D, Zhang Q, Huang J, Sillanpää M (2016) Water-soluble ionic composition of aerosols at urban location in the foothills of Himalaya, Pokhara Valley, Nepal. Atmosphere 7:1–13CrossRefGoogle Scholar
  76. Tripathi S, Dey S, Chandel A, Srivastava S, Singh RP, Holben B (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101CrossRefGoogle Scholar
  77. Wan X, Kang S, Li Q, Rupakheti D, Zhang Q, Guo J, Chen P, Tripathee L, Rupakheti M, Panday AK, Wang W, Kawamura K, Gao S, Wu G, Cong Z (2017) Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmos Chem Phys 17:8867–8885Google Scholar
  78. Wang S, Fang L, Gu X, Yu T, Gao J (2011) Comparison of aerosol optical properties from Beijing and Kanpur. Atmos Environ 45:7406–7414CrossRefGoogle Scholar
  79. Xiao ZY, Jiang H, Song XD (2017) Aerosol optical thickness over Pearl River Delta region, China. Int J Remote Sens 38:258–272CrossRefGoogle Scholar
  80. Xie Y, Zhang Y, Xiong X, Qu JJ, Che H (2011) Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos Environ 45:5970–5978CrossRefGoogle Scholar
  81. Xin J, Zhang Q, Wang L, Gong C, Wang Y, Liu Z, Gao W (2014) The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos Res 138:179–188CrossRefGoogle Scholar
  82. Xu C, Ma YM, Panday A, Cong ZY, Yang K, Zhu ZK, Wang JM, Amatya PM, Zhao L (2014) Similarities and differences of aerosol optical properties between southern and northern sides of the Himalayas. Atmos Chem Phys 14:3133–3149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and ResourcesChinese Academy of SciencesLanzhouChina
  4. 4.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  5. 5.Institute for Advanced Sustainability Studies (IASS)PotsdamGermany
  6. 6.Himalayan Sustainability Institute (HIMSI)KathmanduNepal
  7. 7.International Centre for Integrated Mountain Development (ICIMOD)LalitpurNepal
  8. 8.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations