Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 15, pp 15191–15203 | Cite as

Detection and molecular characterization of Cryptosporidium species and Giardia assemblages in two watersheds in the metropolitan region of São Paulo, Brazil

  • Ronalda Silva de Araújo
  • Bruna Aguiar
  • Milena Dropa
  • Maria Tereza Pepe Razzolini
  • Maria Inês Zanoli Sato
  • Marcelo de Souza Lauretto
  • Ana Tereza Galvani
  • José Antônio Padula
  • Glavur Rogério Matté
  • Maria Helena MattéEmail author
Research Article

Abstract

Cryptosporidium and Giardia are associated with cases of water and foodborne outbreaks in the world. This study included 50 samples of surface raw water collected from two watersheds in the state of São Paulo, Brazil. The isolation of (oo)cysts was performed in accordance with the U.S. Environmental Protection Agency’s methods 1623 and genotypic characterization and quantification were carried out by Nested PCR and qPCR assays based on 18S rRNA and gdh genes, respectively. U.S. EPA 1623 method showed the presence of (oo)cysts in 40% (\( \overline{\mathrm{x}} \) = 0.10 oocysts/L) and 100% (\( \overline{\mathrm{x}} \) = 7.6 cysts/L) of samples from São Lourenço River, respectively, and 24% (\( \overline{\mathrm{x}} \) = 0.8 oocysts/L) and 60% (\( \overline{\mathrm{x}} \) = 1.64 cysts/L) of Guarapiranga Reservoir, respectively. The qPCR assay detected C. hominis/parvum in 52% (0.06 to 1.85 oocysts/L) of São Lourenço River and 64% (0.09 to 1.4 oocysts/L) of Guarapiranga Reservoir samples. Presence/absence test for Giardia intestinalis was positive in 92% of São Lourenço River and 8% of Guarapiranga Reservoir samples. The assemblage A was detected in 16% (0.58 to 2.67 cysts/L) in São Lourenço River and no positive samples were obtained for assemblage B in both water bodies. The characterization of anthroponotic species C. parvum/hominis, G. intestinalis, and assemblage A was valuable in the investigation of possible sources of contamination in the watersheds studied confirming the need of expanding environmental monitoring measures for protection of these water sources in our country.

Keywords

Cryptosporidium Giardia Watersheds PCR qPCR Environmental surveillance Public health 

Notes

Acknowledgements

The authors want to thank Carmen Lucia Vergueiro Midaglia-PhD for the drawing of the map. We would like to thank for the Laboratory of Protozoology of Department of Animal Biology, University of Campinas (Unicamp), Brazil, for providing Ascaris suum eggs and Toxoplasma gondi oocysts. We also thank CETESB and SABESP for supporting the sample collection.

Funding information

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo–FAPESP, Grant Sabesp/Fapesp No. 2010/50797-4. The authors were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES to Araujo, R.S. and partially supported by the CNPq (scholarship 300642/2013-0) to Razzolini, M.T.P.

Compliance with ethical standards

Conflict of interests

The authors declare that they do not have conflict of interest.

Supplementary material

11356_2018_1620_MOESM1_ESM.pdf (660 kb)
ESM 1 (PDF 659 kb).
11356_2018_1620_MOESM2_ESM.doc (78 kb)
ESM 2 (DOCX 78 kb).

References

  1. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14(3):447–475CrossRefGoogle Scholar
  2. Alonso JL, Amorós I, Cañigral I (2011) Development and evaluation of a real-time PCR assay for quantification of Giardia and Cryptosporidium in sewage samples. Appl Microbiol Biotechnol 89(4):1203–1211CrossRefGoogle Scholar
  3. Alonso JL, Amorós I, Guy R (2014) Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitol Res 113(7):2671–2678CrossRefGoogle Scholar
  4. American Public Health Association APHA (2012) American Public Health Association and Water Environment Federation Standard Methods for the examination of water and wastewater, 22th edn. Washington DCGoogle Scholar
  5. Applied Biosystems (2014) Real-time PCR handbook, 3rd edn. Available: http://www.lifetechnologies.com/br/en/home/life-science/pcr/real-time-pcr/qpcr-education/real-time-pcr-handbook.html Accessed August 2014
  6. Araújo RS, Dropa M, Fernandes LN, Carvalho TT, Sato MIZ, Soares RM, Matte RG, Matte MH (2011) Genotypic characterization of Cryptosporidium hominis from water samples in São Paulo, Brazil. Am J Trop Med Hyg 85(5):834–838CrossRefGoogle Scholar
  7. Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks, an update 2004-2010. Water Res 15:6603–6614CrossRefGoogle Scholar
  8. BRASIL/CONAMA (2005) Resolução 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial União: República Federativa do Brasil, Poder Executivo, Brasília, DF, v. 142, n. 53, 18 mar. 2005. Seção 1, p. 58–63. Available: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf Accessed April 2015
  9. BRASIL (2011) Portaria 2914, de 12 de dezembro de 2011 Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade Diário Oficial União: República Federativa do Brasil, Poder Executivo, Brasília, DF, n 3, 4 jan 2012 Seção 1, p 43 Available: http://bvsmssaudegovbr/bvs/saudelegis/gm/2011/prt2914_12_12_2011html Accessed June 2016
  10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chemis 55(4):611–622CrossRefGoogle Scholar
  11. Cacciò SM, Ryan U (2008) Molecular epidemiology of giardiasis. Mol Biochem Parasitol 160(2):75–80CrossRefGoogle Scholar
  12. Cantusio Neto R, Santos LU, Sato MIZ, Franco RMB (2010) Cryptosporidium spp. and Giardia spp. in surface water supply of Campinas, southeast Brazil. Water Sci Technol 62(1):217–222CrossRefGoogle Scholar
  13. Castro-Hermida JA, García-Presedo I, Almeida A, González-Warleta M, Correia da Costa JM, Mezo M (2008) Presence of Cryptosporidium spp. and Giardia duodenalis through drinking. Sci Total Environ 405:45–53CrossRefGoogle Scholar
  14. Chalmers RM, Elwin K, Hadfield SJ, Robinson G (2011) Sporadic human cryptosporidiosis caused by Cryptosporidium cuniculus, United Kingdom, 2007-2008. Emerg Infect Dis 17(3):536–538CrossRefGoogle Scholar
  15. CETESB/ANA (2011) Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidas São Paulo: CETESB; Brasília, DF Available: http://wwwcetesbspgovbr/userfiles/file/laboratorios/publicacoes/guia-nacional-coleta-2012pdf Accessed July 2014
  16. Coupe S, Sarfati C, Hamane S, Derouin F (2005) Detection of Cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. J Clin Microbiol 43(3):1017–1023CrossRefGoogle Scholar
  17. Di Giovanni GD, Hoffman RM, Sturbaum GD (2010) Cryptosporidium genotyping method for regulatory microscope slides U.S. Environmental Protection Agency (U.S. EPA). Washington, DC. ISBN 978-1-60573-116-2Google Scholar
  18. Durigan M, Abreu AG, Zucchi MI, Franco RM, de Souza AP (2014) Genetic diversity of Giardia duodenalis: multilocus genotyping reveals zoonotic potential between clinical and environmental sources in a metropolitan region of Brazil. PLoS One 9(12):e115489CrossRefGoogle Scholar
  19. Efstratiou A, Ongerth JE, Karanis P (2017) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2011-2016. Water Res 114:14–22CrossRefGoogle Scholar
  20. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York, LondonCrossRefGoogle Scholar
  21. Elwin K, Hadfield SJ, Robinson G, Chalmers RM (2012) The epidemiology of sporadic human infections with unusual Cryptosporidia detected during routine typing in England and Wales, 2000-2008. Epidemiol Infect 140(4):673–683CrossRefGoogle Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  23. Fernandes LN, Souza PP, Araújo RS et al (2011) Detection of assemblages A and B of Giardia duodenalis in water and sewage from São Paulo state, Brazil. J Water Health 9(2):361–367CrossRefGoogle Scholar
  24. Fontaine M, Guillot E (2002) Development of a TaqMan quantitative PCR assay species for Cryptosporidium parvum. FEMS Microbiol Lett 214:13–17CrossRefGoogle Scholar
  25. Franco RMB, Hachich EM, Sato MIZS, Naveira RML, Silva EC, Campos MMC, Cantúsio Neto R, Cerqueira DA, Branco N, Leal DAG (2012) Avaliação da performance de metodologias de detecção de Cryptosporidium spp. e Giardia spp. em água destinada ao consumo humano, para o atendimento às demandas da vigilância em saúde ambiental no Brasil. Epidemiol Serv Saúde 21(2):233–242CrossRefGoogle Scholar
  26. Guy RA, Pierre PP, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69:5178–5185CrossRefGoogle Scholar
  27. Hachich EM, Sato MI, Galvani AT, Menegon JR, Mucci JL (2004) Giardia and Cryptosporidium in source waters of São Paulo state, Brazil. Water Sci Technol 50(10):230–245Google Scholar
  28. Hadfield SJ, Chalmers RM (2012) Detection and characterization of Cryptosporidium cuniculus by real-time PCR. Parasitol Res 111(3):1385–1390CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acid Symp Series 41:95–98Google Scholar
  30. Higgins JA, Fayer R, Trout M, Xiao L, Lal AA, Kerby S, Jenkins MC (2001) Real-time PCR for the detection of Cryptosporidium parvum. J Microbiol Methods 47(3):323–337CrossRefGoogle Scholar
  31. Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5:1–38CrossRefGoogle Scholar
  32. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evolution 16:111–120CrossRefGoogle Scholar
  33. Koehler AV, Whipp MJ, Haydon SR, Gasser RB (2014) Cryptosporidium cuniculus—new records in human and kangaroo in Australia. Parasitol Vectors 30(7):492CrossRefGoogle Scholar
  34. Li NXL, Wang L, Zhao S, Zhao X, Duan L, Guo M, Liu L, Feng Y (2012) Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater. PLoS Negl Trop Dis 6(9):e1809CrossRefGoogle Scholar
  35. Martínez-Ruiz R, de Lucio A, Fuentes I, Carmena D (2016) Autochthonous Cryptosporidium cuniculus infection in Spain: first report in a symptomatic paediatric patient from Madrid. Enferm Infecc Microbiol Clin 34(8):532–534.  https://doi.org/10.1016/j.eimc.2015.11.012 CrossRefGoogle Scholar
  36. Nolan MJ, Jex AR, Koehler AV, Haydon SR, Stevens MA, Gasser RB (2013) Molecular based investigation of Cryptosporidium and Giardia from animals in water catchments in southeastern Australia. Water Res 47(5):1726–1740CrossRefGoogle Scholar
  37. Puleston RL, Mallaghan CM, Modha DE, Hunter PR, Nguyen-Van-Tam JS, Regan CM, Nichols GL, Chalmers RM (2014) The first recorded outbreak of cryptosporidiosis due to Cryptosporidium cuniculus (formerly rabbit genotype), following a water quality incident. J Water Health 12(1):41–50CrossRefGoogle Scholar
  38. Plutzer J, Ongerth J, Karanis P (2010) Giardia taxonomy, phylogeny and epidemiology: facts and open questions. Int J Hyg Environ Health 213(5):321–333CrossRefGoogle Scholar
  39. R Core Team (2013) R: a language and environment for statistical computing R foundation for statistical computing. Vienna, Austria. ISBN 3-900051-07-0Google Scholar
  40. Razzolini MTP, Santos TFS, Bastos VK (2010) Detection of Giardia and Cryptosporidium cysts/oocysts in watersheds and drinking water sources in Brazil urban areas. J Water Health 8(2):399–404CrossRefGoogle Scholar
  41. Reina FTR, Ribeiro CA, Araújo RS, Matté MH, Castanho REP, Tanaka II, Viggiani AMFS, Martins LPA (2016) Intestinal and pulmonary infection by Cryptosporidium parvum in two patients with HIV/AIDS. Rev Ins Med Trop S Paulo.  https://doi.org/10.1590/S1678-9946201658021
  42. Ribeiro WC (2011) Oferta e estresse hídrico na Região Metropolitana de São Paulo. Estudos Avan 25(71):119–133CrossRefGoogle Scholar
  43. Robertson LJ, Hanevik K, Escobedo AA, Morchm K, Langelandmm N (2010) Giardiasis—why do the symptoms sometimes never stop? Trends in Parasitol 26(2):75–82CrossRefGoogle Scholar
  44. Rosado-García FM, Guerrero-Flórez M, Karanis G, Hinojosa MDC, Karanis P (2017) Water-borne protozoa parasites: the Latin American perspective. Int J Hyg Environ Health 220(5):783–798CrossRefGoogle Scholar
  45. Ruecker NJ, Hoffman RM, Chalmers RM, Neumann NF (2011) Detection and resolution of Cryptosporidium species and species mixtures by genus-specific nested PCR-restriction fragment length polymorphism analysis, direct sequencing, and cloning. Appl Environ Microbiol 77(12):3998–4007CrossRefGoogle Scholar
  46. Ryan U, Paparini A, Monis P, Hijjawi N (2016) It’s official—Cryptosporidium is a gregarine: what are the implications for the water industry? Water Res 15(105):305–313CrossRefGoogle Scholar
  47. Original S, Lib S, Tibshirani R, Leisch F (2015) Bootstrap: functions for the book “An introduction to the bootstrap”. R package version 20152 http://CRANR-projectorg/package=bootstrap Accessed June 2015
  48. Sato MIZ, Galvani AT, Padula JA, Nardocci AC, Lauretto MS, Razzolini MTP, Hachich EM (2013) Assessing the infection risk of Giardia and Cryptosporidium in public drinking water delivered by surface water systems in Sao Paulo State, Brazil. Sci Total Environ 442:389–396CrossRefGoogle Scholar
  49. Scalia LA, Fava NM, Soares RM, Limongi JE, da Cunha MJ, Pena IF, Kalapothakis E, Cury MC (2016) Multilocus genotyping of Giardia duodenalis in Brazilian children. Trans R Soc Trop Med Hyg 110:343–349.  https://doi.org/10.1093/trstmh/trw036 CrossRefGoogle Scholar
  50. Staggs SE, Beckman EM, Keel SP et al (2013) The applicability of TaqMan based quantitative real-time PCR assays for detecting and enumerating Cryptosporidium spp. oocysts in the environment. PLoS One 8(6):e66562CrossRefGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefGoogle Scholar
  52. Ulloa-StanojloviĆ FM, Aguiar B, Jara LM et al (2016) Occurrence of Giardia intestinalis and Cryptosporidium sp. in wastewater samples from São Paulo State, Brazil, and Lima, Peru. Environ Sci Pollut Res 23:22197–22205.  https://doi.org/10.1007/s11356-016-7537-9 CrossRefGoogle Scholar
  53. U.S. EPA-United States Environmental Protection Agency (2005) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA-815-R-05-002 USA EPA, Washington, DC Available at: http://wwwepagov/nerclcwww/1623ap01pdf Acessed April 2013
  54. Verweij JJ, Schinkel J, Laeijendecker D, Rooyen MAAV, Lieshout LV, Polderman AM (2003) Real-time PCR for the detection of Giardia lamblia. Mol Cell Probes 17:223–225CrossRefGoogle Scholar
  55. World Health Organization WHO (2011) Guidelines of drinking water quality. Microbial facts sheets. 4th ed. Genève. ISBN 978 92 4 1548151Google Scholar
  56. Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A (2001) Molecular characterization of Cryptosporidium oocysts in samples of raw water and wastewater. Appl Environ Microbiol 67(3):1097–1101CrossRefGoogle Scholar
  57. Xiao L, Fayer R (2008) Molecular characterization of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol 38:1239–1255CrossRefGoogle Scholar
  58. Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431(7012):1107–1112CrossRefGoogle Scholar
  59. Yee J, Dennis PP (1992) The NADP-dependent glutamate dehydrogenase of Giardia lamblia: a study of function, gene structure and expression. J Biol Chem 267(11):7539–7544Google Scholar
  60. Yu X, Michele I, Dykem PA, Peter MH (2009) Development of a direct extraction protocol for real-time PCR detection of Giardia lamblia from surface water. Ecotoxicology 18:661–668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ronalda Silva de Araújo
    • 1
  • Bruna Aguiar
    • 1
  • Milena Dropa
    • 1
  • Maria Tereza Pepe Razzolini
    • 1
  • Maria Inês Zanoli Sato
    • 2
  • Marcelo de Souza Lauretto
    • 3
  • Ana Tereza Galvani
    • 2
  • José Antônio Padula
    • 2
  • Glavur Rogério Matté
    • 1
  • Maria Helena Matté
    • 1
    Email author
  1. 1.Faculdade de Saúde PúblicaUniversidade de São PauloSão PauloBrazil
  2. 2.Companhia Ambiental do Estado de São Paulo – CETESBSão PauloBrazil
  3. 3.Escola de Artes, Ciências e Humanidades – EACHUniversidade de São PauloSão PauloBrazil

Personalised recommendations