Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China

  • Zhenchuan Niu
  • Weijian Zhou
  • Xue Feng
  • Tian Feng
  • Shugang Wu
  • Peng Cheng
  • Xuefeng Lu
  • Hua Du
  • Xiaohu Xiong
  • Yunchong Fu
Research Article
  • 31 Downloads

Abstract

Radiocarbon (14C) is the most accurate tracer available for quantifying atmospheric CO2 derived from fossil fuel (CO2ff), but it is expensive and time-consuming to measure. Here, we used common hourly Air Quality Index (AQI) pollutants (AQI, PM2.5, PM10, and CO) to indirectly trace diurnal CO2ff variations during certain days at the urban sites in Beijing and Xiamen, China, based on linear relationships between AQI pollutants and CO2ff traced by 14C (\( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \)) for semimonthly samples obtained in 2014. We validated these indirectly traced CO2ff (CO2ff-in) concentrations against \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) concentrations traced by simultaneous diurnal 14CO2 observations. Significant (p < 0.05) strong correlations were observed between each of the separate AQI pollutants and \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) for the semimonthly samples. Diurnal variations in CO2ff traced by each of the AQI pollutants generally showed similar trends to those of \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \), with high agreement at the sampling site in Beijing and relatively poor agreement at the sampling site in Xiamen. AQI pollutant tracers showed high normalized root-mean-square (NRMS) errors for the summer diurnal samples due to low \( {\mathrm{C}\mathrm{O}}_{2 ff}{{{}_{-}}^{14}}_{\mathrm{C}} \) concentrations. After the removal of these summer samples, the NRMS errors for AQI pollutant tracers were in the range of 31.6–64.2%. CO generally showed a high agreement and low NRMS errors among these indirect tracers. Based on these linear relationships, monthly CO2ff averages at the sampling sites in Beijing and Xiamen were traced using CO concentration as a tracer. The monthly CO2ff averages at the Beijing site showed a shallow U-type variation. These results indicate that CO can be used to trace CO2ff variations in Chinese cities with CO2ff concentrations above 5 ppm.

Keywords

Δ14Fossil fuel CO2 Indirect tracer CO PM2.5 

Notes

Acknowledgments

The anonymous reviewers are acknowledged for their valuable comments.

Supplementary material

11356_2018_1616_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)

References

  1. Chen H, Winderlich J, Gerbig C, Hoefer A, Rella CW, Crosson ER, Van Pelt AD, Steinbach J, Kolle O, Beck V, Daube BC, Gottlieb EW, Chow VY, Santoni GW, Wofsy SC (2010) High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmos Meas Tech 3:375–386CrossRefGoogle Scholar
  2. Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Phys B Lasers Opt 92:403–408CrossRefGoogle Scholar
  3. Djuricin S, Pataki DE, Xu X (2010) A comparison of tracer methods for quantifying CO2 sources in an urban region. J Geophys Res 115:D11303CrossRefGoogle Scholar
  4. Duren RM, Miller CE (2012) Measuring the carbon emissions of megacities. Nat Clim Chang 2:560–562CrossRefGoogle Scholar
  5. Gamnitzer U, Karstens U, Kromer B, Neubert REM, Meijer HAJ, Schroeder H, Levin I (2006) Carbon monoxide: a quantitative tracer for fossil fuel CO2? J Geophys Res 111:D22302CrossRefGoogle Scholar
  6. Global Monitoring Division of the Earth System Research Laboratory (GMD/ESRL) (2017) National Oceanic and Atmospheric Administration, U.S. Department of Commerce. ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt
  7. Graven HD, Gruber N (2011) Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2. Atmos Chem Phys 11:12339–12349CrossRefGoogle Scholar
  8. Graven HD, Guilderson TP, Keeling RF (2012) Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J Geophys Res 117:D02303Google Scholar
  9. Gregg JS, Andres RJ, Marland G (2008) China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett 35:L08806CrossRefGoogle Scholar
  10. Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:L02816CrossRefGoogle Scholar
  11. Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, Haddad IE, Prévôtm ASH (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222CrossRefGoogle Scholar
  12. Jull AJT (2007) Radiocarbon dating: AMS method. In: Scott AE (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2911–2918CrossRefGoogle Scholar
  13. Kuc T, Rozanski K, Zimnoch M, Necki J, Chmura L, Jelen D (2007) Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in Central Europe: long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49:807–816CrossRefGoogle Scholar
  14. Levin I, Hesshaimer V (2000) Radiocarbon-a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80CrossRefGoogle Scholar
  15. Levin I, Karstens UTE (2007) Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B 59:245–250CrossRefGoogle Scholar
  16. Levin I, Schuchard J, Kromer B, Münnich KO (1989) The continental European Suess effect. Radiocarbon 31:431–440CrossRefGoogle Scholar
  17. Levin I, Kromer B, Schmidt M, Sartorius H (2003) A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys Res Lett 30:2194CrossRefGoogle Scholar
  18. Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391:211–216CrossRefGoogle Scholar
  19. Liu HZ, Feng JW, Järvi L, Vesala T (2012) Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos Chem Phys 12:7881–7892CrossRefGoogle Scholar
  20. Lopez M, Schmidt M, Delmotte M, Colomb A, Gros V, Janssen C, Lehman SJ, Mondelain D, Perrusse O, Ramonet M, Xueref-Remy I, Bousquet P (2013) CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010. Atmos Chem Phys 13:7343–7358CrossRefGoogle Scholar
  21. Miller JB, Lehman SJ, Montzka SA, Sweeney C, Miller BR, Wolak C, Dlugokencky EJ, Southon JR, Turnbull JC, Tans PP (2012) Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. J Geophys Res 117:D08302CrossRefGoogle Scholar
  22. Naegler T, Levin I (2009) Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. J Geophys Res 114:D17303CrossRefGoogle Scholar
  23. Newman S, Xu X, Gurney KR, Kuang HY, Li KF, Jiang X, Keeling R, Feng S, O’Keefe D, Patarasuk R, Wong K, Rao P, Fischer ML, Yung YL (2016) Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity. Atmos Chem Phys 16:3843–3863CrossRefGoogle Scholar
  24. Niu Z, Wang S, Chen J, Zhang F, Chen X, He C, Lin L, Yin L, Xu L (2013) Source contributions to carbonaceous species in PM2.5 and their uncertainty analysis at typical urban, peri-urban and background sites in Southeast China. Environ Pollut 181:107–114CrossRefGoogle Scholar
  25. Niu Z, Zhou W, Zhang X, Wang S, Zhang D, Lu X, Cheng P, Wu S, Xiong X, Du H, Fu Y (2016a) The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China. Environ Sci Pollut Res 23:556–562CrossRefGoogle Scholar
  26. Niu Z, Zhou W, Wu S, Cheng P, Lu X, Xiong X, Du H, Fu Y, Wang G (2016b) Atmospheric fossil fuel CO2 traced by Δ14C in Beijing and Xiamen, China: temporal variations, inland/coastal differences and influencing factors. Environ Sci Technol 50:5474–5480CrossRefGoogle Scholar
  27. Niu Z, Zhou W, Cheng P, Wu S, Lu X, Xiong X, Du H, Fu Y (2016c) Observations of atmospheric Δ14CO2 at the global and regional background sites in China: implication for fossil fuel CO2 inputs. Environ Sci Technol 50:12122–12128CrossRefGoogle Scholar
  28. Norušis JM (2008) SPSS statistics 17.0 guide to data analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  29. Rakowski AZ, Nakamura T, Pazdur A (2008) Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. J Environ Radioact 99:1558–1565CrossRefGoogle Scholar
  30. Riley WJ, Hsueh DY, Randerson JT, Fischer ML, Hatch JG, Pataki DE, Wang W, Goulden ML (2008) Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J Geophys Res 113:G04002CrossRefGoogle Scholar
  31. Slota P, Jull AT, Linick T, Toolin L (1987) Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29:303–306CrossRefGoogle Scholar
  32. Song Y, Zhang Y, Xie S, Zeng L, Zheng M, Salmon LG, Shao M, Slanina S (2006) Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos Environ 40(8):1526–1537CrossRefGoogle Scholar
  33. Streets DG, Zhang Q, Wang L, He K, Hao J, Wu Y, Tang Y, Carmichael GR (2006) Revisiting China’s CO emissions after the transport and chemical evolution over the Pacific (TRACE-P) mission: synthesis of inventories, atmospheric modeling, and observations. J Geophys Res 111:D14306CrossRefGoogle Scholar
  34. Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363CrossRefGoogle Scholar
  35. Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817CrossRefGoogle Scholar
  36. Turnbull JC, Lehman SJ, Miller JB, Sparks RJ, Southon JR, Tans PP (2007) A new high precision 14CO2 time series for North American continental air. J Geophys Res Atmos 112:D11310CrossRefGoogle Scholar
  37. Turnbull J, Rayner P, Miller J, Naegler T, Ciais P, Cozic A (2009) On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. J Geophys Res 114:D22302CrossRefGoogle Scholar
  38. Turnbull JC, Tans PP, Lehman SJ, Baker D, Conway TJ, Chung YS, Gregg J, Miller JB, Southon JR, Zhou LX (2011) Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia. J Geophys Res 116:D24306CrossRefGoogle Scholar
  39. Turnbull JC, Keller ED, Norris MW, Wiltshire RM (2016) Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. PNAS 113(37):10287–10291CrossRefGoogle Scholar
  40. van der Laan S, Karstens U, Neubert REM, Van Der Laan-Luijkx IT, Meijer HAJ (2010) Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222Radon. Tellus B 62:389–402CrossRefGoogle Scholar
  41. Verhulst KR, Karion A, Kim J, Salameh PK, Keeling RF, Newman S, Miller J, Sloop C, Pongetti T, Rao P, Wong C, Hopkins FM, Yadav V, Weiss RF, Duren RM, Miller CE (2017) Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – part 1: calibration, urban enhancements, and uncertainty estimates. Atmos Chem Phys 17:8313–8341CrossRefGoogle Scholar
  42. Vogel FR, Hammer S, Steinhof A, Kromer B, Levin I (2010) Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany. Tellus B 62(5):512–520CrossRefGoogle Scholar
  43. Vogel FR, Levin I, Worthy DEJ (2013) Implications for deriving regional fossil fuel CO2 estimates from atmospheric observations in a hot spot of nuclear power plant 14CO2 emissions. Radiocarbon 55:1556–1572CrossRefGoogle Scholar
  44. Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194Google Scholar
  45. Yang Y, Tao J, Zhu L, Zhang Z, Wang Q, Cao J (2017) Characterization of chemical compositions of PM2.5 and its impact on scattering coefficients at a background site over Western China. Acta Sci Circumst 37(4):1216–1226 (in Chinese)Google Scholar
  46. Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J (2013) Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol Air Qual Res 13:574–583Google Scholar
  47. Zhang W, Guo JH, Sun YL, Yuan H, Zhuang GS, Zhuang YH, Hao ZP (2007) Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chin Sci Bull 52(5):608–615CrossRefGoogle Scholar
  48. Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee LCS, Zhu L, Chen Z, Zhao Y, Shen Z (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074CrossRefGoogle Scholar
  49. Zhou W, Zhao X, Lu X, Liu L, Wu Z, Cheng P, Zhao W, Huang C (2006) The 3MV multi-element AMS in Xi’an, China: unique features and preliminary test. Radiocarbon 48(2):285–293CrossRefGoogle Scholar
  50. Zhou W, Wu S, Huo W, Xiong X, Cheng P, Lu X, Niu Z (2014) Tracing fossil fuel CO2 using Δ14C in Xi’an City, China. Atmos Environ 94:538–545CrossRefGoogle Scholar
  51. Zondervan A, Meijer HAJ (1996) Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis. Tellus B 48:601–612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhenchuan Niu
    • 1
    • 2
    • 3
  • Weijian Zhou
    • 1
    • 2
    • 3
    • 4
  • Xue Feng
    • 5
  • Tian Feng
    • 1
    • 2
  • Shugang Wu
    • 1
    • 2
  • Peng Cheng
    • 1
    • 2
  • Xuefeng Lu
    • 1
    • 2
  • Hua Du
    • 1
    • 2
  • Xiaohu Xiong
    • 1
    • 2
  • Yunchong Fu
    • 1
    • 2
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and ApplicationXi’an AMS CenterXi’anChina
  3. 3.Open Studio for Oceanic-Continental Climate and Environment ChangesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Joint Center for Global Change StudiesBeijing Normal UniversityBeijingChina
  5. 5.College of Urban and Environmental SciencesNorthwest UniversityXi’anChina

Personalised recommendations